UNITED STATES AIR FORCE
SUMMER RESEARCH PROGRAM -- 1999

SUMMER RESEARCH EXTENSION PROGRAM FINAL REPORTS

VOLUME 3

ROME LABORATORY

RESEARCH & DEVELOPMENT LABORATORIES
5800 Uplander Way
Culver City, CA 90230-6608

Program Director, RDL Program Manager, AFOSR
Gary Moore Colonel Jan Cerveny
Program Manager, RDL Program Administrator, RDL
Scott Licoscos Johnetta Thompson

Program Administrator, RDL
Rebecca Kelly-Clemmons

Submitted to:

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Bolling Air Force Base
Washington, D.C.

December 1999

AGMo1- 061177

(820 61501007

PREFACE

This volume is part of a four-volume set that summarizes the research of participants in
the 1999 AFOSR Summer Research Extension Program (SREP). The current volume,
Volume 1 of 4, presents the final reports of SREP participants at Armstrong Laboratory.

Reports presented in this volume are arranged alphabetically by author and are numbered
consecutively --e.g, 1-1, 1-2, 1-3; 2-1, 2-2, 2-3, with each series of reports preceded by
a 35 page management summary. Reports in the four-volume set are organized as
follows:

VOLUME TITLE
1 Armstrong Research Laboratory
2 Phillips Research Laboratory
3 Rome Research Laboratory

4 Wright Research Laboratory

REPORT DOCUMENTATION PAGE

Pubfic reporting burden for this collection of information is est
the coltection of information. Send

d to average 1 hour per response, inchuding the time for reviewing instructions, {
of garding this burden estimate or any other aspect of this colection of information, including st
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arfington, VA 22202-4302, snd to the Office °£ Management and Budget, P

ol

1. AGENCY USE ONLY (Leave blank] 2. REPORT DATE

December, 1999

3. REP.

4. TITLE AND SUBTITLE

(SREP), Final Report, Volume 3, Rome Laboratory

1999 Summer Research Program (SRP), Summer Research Extension Program

6. AUTHOR(S)
Gary Moore

AFRL-SR-BL-TR-00-

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES]
Research & Development Laboratories (RDL)
5800 Uplander Way

Culver City, CA 90230-6608

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research (AFOSR)
801 N. Randolph St.

Arlington, VA 22203-1977

W reviewing
Information

5. FUNDING NUMBERS
F49620-93-C-0063

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Rome Laboratory.

The United States Air Force Summer Research Program (SRP) is designed to introduce university, college, and technical
institute faculty members to Air Force research. This is accomplished by the faculty members, graduate students, and high
school students being selected on a nationally advertised competitive basis during the summer intersession period to perforn
research at Air Force Research Laboratory (AFRL) Technical Directorates and Air Force Air Logistics Centers (ALC).
AFOSR also offers its research associates (faculty only) an opportunity, under the Summer Research Extension Program
(SREP), to continue their AFOSR-sponsored research at their home institutions through the award of research grants. This
volume consists of a listing of the participants for the SREP and the technical report from each participant working at the AT

14. SUBJECT TERMS

Faculty, Graduate Student, High School Student

Air Force Research, Air Force, Engineering, Laboratories, Reports, Summer, Universities,

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL

Standard Form 298 (BRev. 2-89) (EG)
Prescribed by ANS| Std. 239,18
Designed using Perform Pro, WHS/DIOR, Oct 94

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important that this information be consistent with
the rest of the report, particularly the cover and title page. Instructions for filling in each block of the form follow. It is important to stay

within the lines to meet optical scanning requirements.

~
A

Block 1. Agency Use Only (Leave blank).

Block 2. Report Date. Full publication date including day, month,
and year, if available
{e.g. 1 Jan 88). Must cite at least the year.

Block 3. Type of Report and Dates Covered. State whether report
is interim, final, etc. if applicable, enter inclusive report dates (e.g.
10 Jun 87 - 30 Jun 88).

Block 4. Title and Subtitle. A title is taken from the part of the
report that provides the most meaningful and complete information.
When a report is prepared in more than one volume, repeat the
primary title, add volume number, and include subtitle for the specific
volume. On classified documents enter the title classification in
parentheses.

Block 5. Funding Numbers. To include contract and grant numbers;
may include program element number(s), project number(s), task
number(s), and work unit number(s). Use the following labels:

C - Contract PR - Project

G - Grant TA - Task

PE - Program WU - Work Unit
Element Accession No.

Block 6. Author(s). Name(s) of person(s) responsible for writing the
report, performing the research, or credited with the content of the
report. If editor or compiler, this should follow the name(s).

Block 7. Performing Organization Name(s) and Address(es).
Self-explanatory.

Block 8. Performing Organization Report Number. Enter the unique
alphanumeric report number(s) assigned by the organization
performing the report.

Block 9. Sponsoring/Monitoring Agency Name(s) and Address(es).
Self-explanatory.

Block 10. Sponsoring/Monitoring Agency Report Number. {/f
known)

Block 11. Supplementary Notes. Enter information not included
elsewhere such as: Prepared in cooperation with....; Trans. of....;
To be published in.... When a report is revised, include a statement
whether the new report supersedes or supplements the older report.

Block 12a. Distribution/Availability Statement. Denotes public
availability or limitations. Cite any availability to the public. Enter
additional limitations or special markings in all capitals (e.g. NOFORN,
REL, ITAR).

DOD - See DoDD 5230.24, "Distribution Statements on
Technical Documents."

DOE - See authorities.

NASA- See Handbook NHB 2200.2.

NTIS - Leave blank.

Block 12b. Distribution Code.

DOD - Leave blank.

DOE - Enter DOE distribution categories from the Standard
Distribution for Unclassified Scientific and Technical
Reports.
Leave blank.

NASA - Leave blank.

NTIS -

Block 13. Abstract. Include a brief (Maximum 200 words) factual
summary of the most significant information contained in the report.

Block 14. Subject Terms. Keywords or phrases identifying major
subjects in the report.

Block 15. Number of Pages. Enter the total number of pages.
Block 16. Price Code. Enter appropriate price code (NV7/S only).
Blocks 17. - 19. Security Classifications. Self- explanatory. Enter
U.S. Security Classification in accordance with U.S. Security

Regulations (i.e., UNCLASSIFIED). If form contains classified
information, stamp classification on the top and bottom of the page.

Block 20. Limitation of Abstract. This block must be completed to
assign a limitation to the abstract. Enter either UL (unlimited) or SAR
(same as report). An entry in this block is necessary if the abstract is
to be fimited. If blank, the abstract is assumed to be unlimited.

Standard Form 298 Back (Rev. 2-89)

1999 SREP Final Technical Report Table of Contents

Ammstrong Research Laboratory
Volume
Principle Report Title Laboratory &
Investigator University/Institution Drectorate
1 Dr. Kenneth Gractz Conflict Resolution in Distributed Meetings:Using Collaboration AFRL/HEN
Technology to Support Battle Staff

University of Dayton

2 Dr. Nadini Kannan Altitude Decompression Sickness: Modeling and Prediction LFRL/HEPR
University of Texas at San Antonio

3 Ms. Vanessa Le A Studv on Stress-Induced Alterations In Blood-BrainBarrrier AFRL/HEDB

Permeability to Pyridostigmine
University of Texas at Anstin

4 Dr. Ramaswamy Ramesh Modeling and Analysis of DMT Systems: Training Effectiveness, AFRL/HEA
Costs, Resource Management and Acquisition Strategies
Research Foundation of SUNY

1999 SREP Final Technical Report Table of Contents

Phillips Research Laboratory
Volume 2

Principle Report Title Laboratory &
Investigator University/Institution Directorate
Dr. Gurnam Gill Adaptive signal Processing and its Applications in Space AFRL/VSSS

Space based Radar

Naval Postgraduate School
Dr. Robert Hinde Dopant-Induced Infrafed Activity in Solid Hydrogen An AFRL/PRSP

AB Initio and Quantum Monte Carlo Study
University of Tennessee

Dr. Brian Jeffs Algebraic Methods for Improved Blind Restoration of AFRL/DEHP
Adaptive Optics Images of Space Objects
Brigham Young University

Dr. Donald Leo Self-Sensing acoustic Sources For Interior Noise Control in AFRL/VSDV
Payload Fairings
University of Toledo

Dr. Arfin Lodhi Investigation into Time-Dependent Power Loses from AFRL/VSDV
AMTEC Components
Texas Tech University

Dr. John McHugh Atmospheric Gravity Waves Near the Tropopause AFRL/ VSBC
University of New Mexico

Dr. Stanly Steinberg Lie-Algebraic representations of Product Integrals of AFRL/DEOB
Variable Matrices
University of New Mexico

Mr. Kenneth Stephens 11 Simulation of a Magnetized Target Fusion Concept Using AFRL/VSDV
MACH 2
University of North Texas

1999 SREP Final Technical Report Table of Contents
Rome Research Laboratory
Volume 3

Principle Report Title Laboratory &
Investigator University/Institution Directorate

1 Dr. Ercument Arvas Realization of Low Noise MMIC Amplifier as AFRL/SNDR
a Microwave —to Optics Link for Radar
Syracuse University

2 Dr. Kaliappan Gopalan Detection of Acoustic Correlates of Stress from AFRI/IFEC
Modulation Characteristics
Purdue Research Foundation

3 Dr. Donald Hung An Investigation on Accelerating the Ray-Tracing Computations AFRL/TFSA
Washington State University

4 Dr. Adam Lutoborski Transform Methods for Watermarking Digital Images AFRL/IFEC
Syracuse University

5 Dr. Brajendra Panda Implementation of Petri Nets Based Multi-source Attack AFRL/IFGB
Detection Model
University of North Dakota

6 Dr. Jerry Potter Algorithms for Data Intensive Knowledge Discovery AFRL/IFGA
Kent State University

7 Dr. Shambhu Upadhyaya A Distributed concurrent Intrusion Detection and Recovery Scheme ~ AFRL/IFGA
based on Assertions :
SUNY Buffalo

1999 SREP Final Technical Report Table of Contents
Wright Research Laboratory
Volume 4

Principle Report Title Laboratory &
Investigator University/Institution Directorate

1 Dr. Farid Ahmed Image Quality Assessment for ART Applications Using AFRL/SNAT
Multiresolional Information Metrics
Pennsylvania State University, Erie

2 Dr. Gregory Buck Acoustic Disturbance Source Modeling and Development for AFRL/VAAA
Hypersonic Receptivity
South Dakota School of Mines

3 Dr. Kevin Belfield Synthesis of New Two-Photon Absorbing Dyes, Monomers AFRL/ML
and Polymers
University of Centra! Florida

4 Dr. Patrick Gilcrease Biocatalysis of Biphenyl and Diphenylacetylene in an Aqueous AFRI/MLQ
Organic Biphasic Reaction System
University of Wyoming

5 Dr. Jeffrey Johnson Incorporating Fixed, Adaptive, and Leamning Controllers to AFRL/VACC
the Flight Control
University of Toledo

6 Dr. Vikram Kapila Dvnamics and control of Spacecraft Formation Flying AFRL/VACC
Polytechnic Institute of New York

7 Dr. Kenneth Kihm Micro-Scale Flow Field Measurement of the Thin Meniscus of AFRL/VAVE
Capillary-Driven Heat Exchanger Devices Using MFW
Texas A & M University

8 Dr. Rongxing Li Uncertainty Modeling of Target Locations From Multiplatform AFRL/SNAR
and Multisensor Data
Ohio State

9 Dr. Chun-Shin Lin Sensor Fusion w/Passive Millimeter Wave & Laser Radar AFRL/MNGS
for Target Detection
University of Missouri —

10 Dr. Chaoqun Liu Boundary Conditions in Curvilinear Coordinates for Direct AFRIL/VAAA
Numerical Simulation of Turbulent Flow
Louisiana Tech University

Principle
Investigator

1999 SREP Final Technical Report Table of Contents

Wright Research Laboratory
Volume 4, contimued

Report Title
University/Institution

Laboratory &
Directorate

11

12

13

14

15

16

17

18

Dr. Carl Mungan

Dr. Amod Ogale

Dr. Stephen Saddow

Dr. Paavo Sepri

Dr. Hongchi Shi

Dr. Mehrdad Soumekh

Mr. Craig Rivietlo

Infrared Spectropolarimetric Directional Reflectance and
Emissivity of Mental Surfaces
University of Forida

Structural Changes in Mesophase Pitch-Based Carbon Fibers:
In SITU & ES SITU Measurements
Clemson University

Benchmarking Aerodynamic Panel Methods for Flight Loads in
Multidisciplinary Optimization
Indiana University

Silicon Carbide Implant Activation & Surface preparation
Investigation

Mississippi State University

Computational Study of Unsteady Flow Interactions Between

Turbine Blades, Cylinder Wakes, and coolant Injection
Florida Institute of Technology

Developing an efficient Algorithm for Routing Processors
of the VGI Parallel Computer for Signal Processing Applications
University of Missouri — Columbia

Signal and Image Processing for FOPEN/GPEN SAR
SUNY Buffalo

In-Situ Synthesis of Discontinuousty Reinforced Titanium

alloy CompoLaboratorys Via Blended Elemental Powder Metallurgy

Processing
Wright State University

AFRL/MNGS

AFRL/MLBC

AFRL/VAS

AFRL/PRPE

AFRL/PRTT

AFRL/MNGI

AFRL/SNRT

AFRL/MLLM

1999 SUMMER RESEARCH EXTENSION PROGRAM (SREP) MANAGEMENT REPORT

1.0 BACKGROUND

Under the provisions of Air Force Office of Scientific Research (AFOSR) contract F49620-90-C-
0076, September 1990, Research & Development Laboratories (RDL), an 8(a) contractor in
Culver City, CA, manages AFOSR’s Summer Research Program. This report is issued in partial
fulfillment of that contract (CLIN 0003AC).

The Summer Research Extension Program (SREP) is one of four programs AFOSR manages
under the Summer Research Program. The Summer Faculty Research Program (SFRP) and the
Graduate Student Research Program (GSRP) place college-level research associates in Air Force
research laboratories around the United States for 8 to 12 weeks of research with Air Force
scientists. The High School Apprenticeship Program (HSAP) is the fourth element of the Summer
Research Program, allowing promising mathematics and science students to spend two months of
their summer vacations working at Air Force laboratories within commuting distance from their
homes.

SFRP associates and exceptional GSRP associates are encouraged, at the end of their summer
tours, to write proposals to extend their summer research during the following calendar year at
their home institutions. AFOSR provides funds adequate to pay for SREP subcontracts. In
addition, AFOSR has traditionally provided further funding, when available, to pay for additional
SREP proposals, including those submitted by associates from Historically Black Colleges and
Universities (HBCUs) and Minority Institutions (Mls). Finally, laboratories may transfer internal
funds to AFOSR to fund additional SREPs. Ultimately the laboratories inform RDL of their
SREP choices, RDL gets AFOSR approval, and RDL forwards a subcontract to the institution
where the SREP associate is employed. The subcontract (see Appendix 1 for a sample) cites the
SREP associate as the principal investigator and requires submission of a report at the end of the
subcontract period.

Institutions are encouraged to share costs of the SREP research, and many do so. The most
common cost-sharing arrangement is reduction in the overhead, fringes, or administrative charges
institutions would normally add on to the principal investigator’s or research associate’s labor.
Some institutions also provide other support (e.g., computer run time, administrative assistance,
facilities and equipment or research assistants) at reduced or no cost.

When RDL receives the signed subcontract, we fund the effort initially by providing 90% of the
subcontract amount to the institution (normally $18,000 for a $20,000 SREP). When we receive
the end-of-research report, we evaluate it administratively and send a copy to the laboratory for a
technical evaluation. When the laboratory notifies us the SREP report is acceptable, we release
the remaining funds to the institution.

Introduction -1

2.0 THE 1999 SREP PROGRAM

SELECTION DATA: A total of 381 faculty members (SFRP Associates) and 130 graduate
students (GSRP associates) applied to participate in the 1998 Summer Research Program. From
these applicants 85 SFRPs and 40 GSRPs were selected. The education level of those selected
was as follows:

1998 SRP Associates, by Degree
SFRP GSRP
PHD MS MS BS
83 1 3 19

Of the participants in the 1998 Summer Research Program 65 percent of SFRPs and 20 percent
of GSRPs submitted proposals for the SREP. Fifty-four proposals from SFRPs and eleven from
GSRPs were selected for funding, which equates to a selection rate of 65% of the SFRP proposals
and of 20% for GSRP proposals.

1999 SREP: Proposals Submitted vs. Proposals Selected
Summer Submitted
1998 SREP SREPs
Participants Proposals Funded
SFRP 85 54 34
GSRP 40 11 2
TOTAL 125 65 36
The funding was provided as follows:
Contractual slots funded by AFOSR 36
Laboratory funded _0
Total 36

Four HBCU/MI associates from the 1998 summer program submitted SREP proposals; four were
selected (none were lab-funded; all were funded by additional AFOSR funds).

Introduction -2

Proposals Submitted and Selected, by Laboratory

Applied Selected
Armstrong Research Site 15 3
Air Logistic Centers 1 0
Arnold Engineering Development Center 1 0
Phillips Research Site 10 8
Rome Research Site 12 7
Wilford Hall Medical Center 1 0
Wright Research Site 25 18
TOTAL 65 36

The 212 1998 Summer Research Program participants represented 60 institutions.

Institutions Represented on the 1998 SRP and 1999 SREP
Number of schools Number of schools Number of schools
Represented in the represented in represented in
Summer 98 Program submitted proposals Funded Proposals
60 36 29
Thirty schools had more than one participant submitting proposals.
Proposals Submitted Per School
[’}
§ Submitted
.“”j Selected
*
|\ S
1 2 3 4 5+

Number of Proposals

Introduction -3

The selection rate for the 60 schools submitting 1 proposal (68%) was better than those
submitting 2 proposals (61%), 3 proposals (50%), 4 proposals (0%) or 5+ proposals (25%).
The 4 schools that submitted 5+ proposals accounted for 30 (15%) of the 65 proposals
submitted.

Of the 65 proposals submitted, 35 offered institution cost sharing. Of the funded proposals
which offered cost sharing, the minimum cost share was $1274.00, the maximum was
$38,000.00 with an average cost share of $12,307.86.

Proposals and Institution Cost Sharing
Proposals Proposals
Submitted Funded
With cost sharing 35 30
Without cost sharing 30 6
Total 65 36

The SREP participants were residents of 31 different states. Number of states represented at
each laboratory were:

States Represented, by Proposals Submitted/Selected per Laboratory
Proposals Proposals
Submitted Funded
Armstrong Research Laboratory 15 3
Air Logistic Centers 1 0
Arnold Engineering Development Center 1 0
Phillips Research Laboratory 10 8
Rome Research Laboratory 12 7
Wilford Hall Medical Center 1 0
Wright Research Laboratory 25 18

Six of the 1999 SREP Principal Investigators also participated in the 1998 SREP.

ADMINISTRATIVE EVALUATION: The administrative quality of the SREP associates’ final
reports was satisfactory. Most complied with the formatting and other instructions provided to
them by RDL. Thirty-six final reports have been received and are included in this report. The
subcontracts were funded by $897,309.00 of Air Force money. Institution cost sharing totaled
$356,928.00.

Introduction -4

TECHNICAL EVALUATION: The form used for the technical evaluation is provided as

Appendix 2. Thirty-two evaluation reports were received. Participants by laboratory versus
evaluations submitted is shown below:

Participants | Evaluations Percent
Armstrong Laboratory 3 2 95.2
Phillips Laboratory 8 8 100
Rome Laboratory 7 7 100
Wright Laboratory 18 15 91.9
Total 36 32 95.0
Notes:

1: Research on four of the final reports was incomplete as of press time so there aren’t any technical
evaluations on them to process, yet. Percent complete is based upon 20/21=95.2%

PROGRAM EVALUATION: Each laboratory focal point evaluated ten areas (see Appendix
2) with a rating from one (lowest) to five (highest). The distribution of ratings was as follows:

RATING SCORES

600

500
400
300
200
100
0
NR 1 2 3
Rating Not Rated 1 2 3 4 5
Responses |7 1 7 62 (6%) | 226 25%) | 617 (67%)

The 8 low ratings (one 1 and seven 2’s) were for question 5 (one 2) “The USAF should
continue to pursue the research in this SREP report” and question 10 (one 1 and six 2’s) “The
one-year period for complete SREP research is about right”, in addition over 30% of the
threes (20 of 62) were for question ten. The average rating by question was:

Question 1 2 3 4 5 6 7 8 9 10

Average | 4.6 4.6 4.7 4.7 4.6 4.7 4.8 4.5 4.6 4.0

Introduction -3

The distribution of the averages was:

AREA AVERAGES

4 41 42 43 44 45 46 47 48 49 5

Area 10 “the one-year period for complete SREP research is about right” had the lowest
average rating (4.1). The overall average across all factors was 4.6 with a small sample
standard deviation of 0.2. The average rating for area 10 (4.1) is approximately three sigma
lower than the overall average (4.6) indicating that a significant number of the evaluators feel
that a period of other than one year should be available for complete SREP research.

Introduction -6

The average ratings ranged from 3.4 to 5.0. The overall average for those reports that were
evaluated was 4.6. Since the distribution of the ratings is not a normal distribution the average
of 4.6 is misleading. In fact over half of the reports received an average rating of 4.8 or
higher. The distribution of the average report ratings is as shown:

AVERAGE RATINGS

1 e T, P NETA, FR g At
SRR R T P

It is clear from the high ratings that the laboratories place a high value on AFOSR’s Summer
Research Extension Programs.

Introduction -7

3.0 SUBCONTRACTS SUMMARY

Table 1 provides a summary of the SREP subcontracts. The individual reports are published in
volumes as shown:

=3
=]
o

Laboratory Vo
Armstrong Research Laboratory

Phillips Research Laboratory
Rome Research Laboratory
Wright Research Laboratory

AW -

Introduction -8

SREP SUB-CONTRACT DATA

Report Author Author's Sponsoring Pert Period Coatract Univ. Cost
Author's University Degree Lab criormance Perio Amount Share
Graetz , Kenneth PbD AL/CF 01/01/99 12/3199 $24983.00 $0.00
Department of Psychology 99-0&23 Conflict resolution in distrikuzed Meet ingl;
University of Dayton, Dayton, OH Using Collaboration Technslogy to

Kannan , Nandini PkD AL/CF 010198 12/31/98 $22492.00 $4478.00
Statistics 99-0€24 Altitude decompression Sickness:

Univ of Texas at San Antonio, San Antonio, TX

Ramesh , Ramaswamy PkD
Magement Science/Systems 99-0822
Research Foundation of SUNY, Buffalo, NY

Le , Vanessa BS
Biochemistry 99-0835
Univ of Texas at Austin, Austin, TX

Gill , Gurnam PhD
EE 99-0634
Naval Postgraduate School, Monterey, CA
Hinde , Robert PRD
Physical Chemistry 99-0831
Univ of Tennessee, Knoxville, TN

Jeffs , Brian PhD
Electrical Engineering 99-0828
Brigham Young University, Provo, UT

Leo , Donald PhD
Mechanical & Aerospace 99-0€35
Virginia Tech, Blacksburg, VA

Lodhi , M. Arfin PhD
Nuclear Physics $9-0€32
Texas Tech University, Lubbock, TX

McHugh , John PkD
Applied Mechanics 99-0833
University of New Hampshire, Durham, NH
Steinberg , Stanly PhD
Mathematics 99-0829

University of New Mexico, Albuquerque, NM

Stephens I , Kenneth MA
99-0€30

University of North Texas, Denton, TX

Arvas , Ercument PkD

Electrical Engineering 99-0838

Syracuse University, Syracuse, NY

Gopalan , Kaliappan PhD

Electrical Engineering 99-0814

Purdue Research Foundation, West Lafayette, IN

Modeling ard
Prediction

AL/CF 01/01/9% 12/31/99 $24979.00 $0.00
Modeling and Analsis of DMT Systems: Trainirg
Effectiveness, Costs, Ressurce Ma

AL/CF 0170198 12/3198 $25000.00 $0.00

a Study on Stress-Induced Alzerations In
Blood-Brain Barrier Permeability to Pyr

PL/VT 010199 12/3199 $25000.00 $0.00
Adaptive signal Processing and its Applicaticns
in Space based Radar

WL/PO 010198 123198 $25000.00 $3976.00
Dopant-Induced Infrafed Activity in Solid
Hydrogen An AB Initio and Quantum Mont

PL/LI 01/01/98 12/3198 $25000.00 $19177.00
Algebraic Methods for Improved blimd Restoratisn
of Adaptive Optics Images of Sp

PL/VT 01/01/99 12/31/99 $24999.00 $7416.00
Self-Sensing Acoustic Sources For Interior No:ise
Control in Payload Fairings

PL/VT 01/0199 12/31/99 $25000.00 $6.00
Investigatioin intc Time-Dependent Power Lasses
from AMTEC Componern-s

PL/VT 01/01/99 12/13/99 $25000.00 $7000.00
Atmospheric Gravity Waves Near The Tropopause

PL/LI 01/01/99 12/31/99 $25000.00
Lie-Algebraic Representations of Product
Integrals £ Variable Mazrices

PL/LI 01/01/99 12/3199 $25000.00 $16764.00
Simulation of a Magnetized Target Fusion Concezt
Tsing MACH2

WL/AA 01/01/99 123199 $25000.00 $13000.00
Realization of Lcw Noise MMIC Amplifier as a
Micrcwave-tc-Optics Link for Radar

RL/IR 01/01/99 12/3199 $25000.00 $38168.00
Detection of Acoustic Correlates of Stress frcm
Modulation Characteristics

$0.00

SREP SUB-CONTRACT DATA

Report Author Author's Sponsoring . Contract Univ. Cost
Author's University Degree Lab Performance Peried g ¢ Share
Hung , Donald PhD RL/IR 010199 12/31/99 $25000.00 $23008.00
Electrical Engineering 99-0812 An Investigatiorn on Accelerating the Ray-Tracing
Washington State University, Richland, WA Compputations

Lutoborski , Adam PhD RL/IR 010199 12/31/99 $25000.00 $1274.00
Applied Mathematics 99-0811 Transform Methods for Watermarking Digital
Syracuse University, Syracuse, NY Images

Panda, Brajendra PhD RI/IR 010198 1231198 $24942.00 $2600.00
Computer Science 99-0810 Implementation cf Petri Nets Based Multi-source

University of North Dakota, Grand Forks, ND

Potter , Jerry PhD
Computer Science 99-0809
Kent State University, Kent, OH

Upadhyaya , Shambhu PhD
Elec & Comp Engineering 99-0813
SUNY Buffalo, Buffalo, NY

Ahmed , Farid PhD
Electrical engineering 99-0806
Penn State Uni-Erie, Erie, PA

Belfield , Kevin PhD
Chemistry 93-0816
University of Central Florida, Orlando, FL
Buck , Gregory PhD
Mechanical Engineering 99-0818
S Dakota School of Mines/Tech, Rapid City, SD
Gilcrease , Patrick PhD
Chemical Engineering 99-0815
University of Wyoming, Laramie, WY

Johnson , Jeffrey PhD
Electrical Engineering and 99-0823
University of Toledo, Toledo, OH

Kapila , Vikram PhD
Aerospace engineering 35-0820

Polytechnic Inst of New York, Brookivn, NY

Kihm , Kenneth PhD
Mechanical Engineering 99-0821
Texas Engineering Experiment Station, College

Li, Rongxing PhD
Photogrammertry & Remote Sensing 95-0831
Ohio State University, Columbus, OH

Lin , Chun-Shin PhD
Electrical Engineering 99-0826
Univ of Missouri - Columbia, Columbia, MO

Liu , Chaoqun
Applied Mathematics
Louisiana Tech University, Ruston, LA

PhD
39-0819

Attack Detection Model

RL/IR 019199 12/3199 $25000.00 $52767.00

Algorithms for Data Intensive Knowledge
Discovery

RL/IR 010198 12/31/98 $25000.00 $6430.00

a Distrubuted ccrncurrent Intrusion Detection And
recovery Scheme based on Assert

WL/AA 10/10/98 12/31/98 $25000.00 $2396.00
Image Quality Assessment for ATR Applications
Using Multiresolutional Informatio

WL/ML 010199 12/31/99 $25000.00 $5765.00
Synthesis of Few Two-Photon Absorbing Dyes,
Monomers and Polymers

WL/FI1 018199 12/31/99 $25000.00 $7639.00
Acoustic Disturbance Source Modeling and
Development for Hypersonic Receptivity

WL/ML 010199 12/31/99 $25000.00 $28010.00
Biocatalysis of Biphenyl and Diphenylacetylene
in an Aqueous-Organic Biphasic Re

WL/FI 010199 12/31/99 $25000.00 $10075.00
Incorporating Fixed, Adaptive, & Learning
Controllers to the Flight Control

WL/FI 010199 12/31/99 $25000.00 $17448.00
Dynamics and Centrol of Spacecraft Formation
Flying

WL/FI 010199 12/31/99 $25000.00 $10310.00
Micro-Scale Flew Field Measurement of the Thin
Meniscus of Capillary-Driven Heat

WIL/AA 010198 12/31/98 $25000.00 $13183.00
Uncertainty Modeling of Target Locations From
Multiplatform and Multisensor Data

WL/MN 010199 12/3199 $25000.00 $1991.00
Sensor Fusion w/Passive Millimeter Wave & Laser
Radar for Target Detection

WL/FI 01/0199 12/31/99 $25000.00 $12521.00
Boundary Conditions in Curvilinear Ccordinates
for Direct Numerical Simulaticn

SREP SUB-CONTRACT DATA

Report Author Author's Sponsoring Pert, Period Contract Univ. Cost
Author's University Degree Lab criormance Feno Amoupnt Share
Mungan , Carl PhD WL/MN 01/0199 12/31/99 $24914.00 $3276.00
Dept of Physics 99-0824 infrared Spectropolarimetric Directonal
University of Florido Pensacola, FL Reflectance and Emissivity of Mental Sur

Ogale , Amod PhD WL/ML 01/01/99 12/31/99 $25000.00 $9000.00
Chemical Engineering 99-0817 Structural Changes in Mescphase Pitch-Based
Clemson University, Clemson, SC Carbon Fibers:In SITU &ES SITU Measu
Pidaparti , Ramana PhD WL/FI 01/01/99 12/31/99 $25000.00 $10582.00
Aceronautics & Astronautics 99-0822 Benchmarking Aerodynamic Panel Methods for

Indiana U-Purdue st Indianap, Indianapolis, IN

Saddow , Stephen PhD
Electrical Engineering 99-0827
Mississippi State University, Mississippi State,
Sepri , Paavo PhD
Eagineering Science 99-0836
Florida Inst of Techaology, Melbourne, FL

Ski , Hongchi

Computer Engineerimg 99-0825
Caiv of Missouri - Cetumbia, Columbia, MO
Soumekh , Mehrdad PhD
Elec/Computer Engineering 99-0807
SUNY Buffalo, Amberst, NY

Riviello , Craig BS
Mechanical 99-0837

Wright State University, Dayton, OH

Flight Loads in Multidisciplinary Opt

WL/PO 01/01/98 12/31/98 $25000.00 $0.00
Silicon Cartide Implant Activation & Surface
preparation Investigation

WL/PO 01/01/99 12/31/99 $25000.00 $6519.00
Computational Study of Unsteady Flow
Interactions Between Turbine Blades, Cylind

WL/MN 01/01/9% 12/31/99 $25000.00 $15851.00
Developing an efficient Algorithm for Routing
Processors of the VGI Parallel Com

WL/AA 01/01/99 12/30/99 $25000.00 50.00
Signal and Image Processing for FOPEN/GPEN SAR

WL/ML 01/01/99 01/01/99 $25000.00 $6304.00
In-Situ Synthesis of Discontinuously Reinforced
Titanium alloy Composites Via Bl

APPENDIX 1:

SAMPLE SREP SUBCONTRACT

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
1999 SUMMER RESEARCH EXTENSION PROGRAM
SUBCONTRACT 99-0806

BETWEEN

Research & Development Laboratories
5800 Uplander Way
Culver City,CA 90230-6608

AND
Penn State Erie, The Behrend College

Contracts and Grants Office
Ene, PA 16563

REFERENCE: Summer Research Extension Program Proposal 98-0029
Start Date: 01/01/99 End Date: 12/31/99
Proposal Amount: ~ $25,000
Proposal Title: Image Quality Assessment Zor ATR Applications Using
Multiresolutional Informatiznal Information Metrics
PRINCIPAL INVESTIGATOR: Dr. Farid Ahmed

Penn State Erie, The Behrend College
Ere, PA 16563

(2) UNITED STATES AFOSR CONTRACT NUMBER: F49520-93-C-0063

(3) CATALOG OF FEDERAL DOMESTIC ASSISTANCE NUMBER (CFDA):12.800
PROJECT TITLE: AIR FORCE DEFENSE RESEARCH SOURCES PROGRAM

() ATTACHMENTS
1 REPORT OF INVENTIONS AND SUBCONTRACT
2 CONTRACT CLAUSES
3 FINAL REPORT INSTRUCTIONS

SIGN SREP SUBCONTRACT AND RETURN TO RDL

1. BACKGROUND: Research & Development Laboratories (RDL) is under contract
(F49620-93-C-0063) to the United States Air Force to administer the Summer
Research Prograﬁ (SRP), sponsored by the Air Force Office of Scientific Research
(AFOSR), Bolling Air Force Base, D C. Under the SRP, a selected number of college
faculty members and graduate students spend part of the summer conducting research
in Air Force laboratories. After completion of the summer tour participants may
submit, through their home institutions. proposals for follow-on research. The follow-
on research is known as the Summer Research Extension Program (SREP).
Approximately 61 SREP proposals annually will be selected by the Air Force for
funding of up to $25,000; shared funding by the academic institution is encouraged.
SREP efforts selected for funding are administered by RDL through subcontracts with
the institutions. This subcontract represents an agreement between RDL and the

institution herein designated in Section 5 below.

7 RDL PAYMENTS: RDL will provide the following payments to SREP institutions:

e 80 percent of the negotiated SREP dollar amount at the start of the SREP

research period.
o The remainder of the funds within 30 days after receipt at RDL of the

acceptable written fina! report for the SREP research.

3 INSTITUTION’S RESPONSIBILITIES: Asa subcontractor to RDL, the institution

designated on the title page will:

Introduction — 14

"

Assure that the research performed and the resources utilized adhere to those
defined in the SREP proposal.

Provide the level and amounts of institutional support specified in the SREP
proposal..

Notifv RDL as soon as possible, but not later than 30 days, of any changes in
3a or 3b above, or any change to the assignment or amount of participation of
the Principal Investigator designated on the title page.

Assure that the research is completed and the final report is delivered to RDL
not lzzer than twelve months from the effective date of this subcontract, but no
later than December 31, 1998. The effective date of the subcontract is one
week after the date that the institution’s contracting representative signs this
subcontract, but no later than January 15, 1998.

Assure that the final report is submitted in accordance with Attachment 3.
Agres that any release of information relating to this subcontract (news
releases, articles, manuscripts, brochures, advertisements, still and motion
pictires, speeches, trade associations meetings, symposia, etc.) will include a
statement that the project or effort depicted was or is sponsored by: Air Force
Office of Scientific Research, Bolling AFB, D.C.

NotZy RDL of inventions or patents claimed as the result of this research as

spec:fied in Attachment 1.

RDL is required by the prime contract to flow down patent rights and technical

datz requirements to this subcontract. Attachment 2 to this subcontract

Imtroduction - 15

contains a list of contract clauses incorporated by reference in the prime

contract.

4. All notices to RDL shall be addressed to:

RDL AFOSR Program Office

5800 Uplander Way

Culver City, CA 90230-6609
5. By their signatures below. the parties agree to provisions of this subcontract.
Abe Sopher Signature of Institution Contrzcting Official

RDL Contracts Manager

Typed/Printed Name

Date

Title

Institution

Date/Phorne

Introduction - 16

ATTACHMENT 2
CONTRACT CLAUSES

This contract incorporates by reference the following clauses of the Federal Acquisition
Regulations (FAR), with the same force and effect as if they were given in full text. Upon
request, the Contracting Officer or RDL will make their full text available (FAR 52.252-2).

FAR CLAUSES TITLE AND DATE

52.202-1 DEFINITIONS

52.203-3 GRATUITIES

52.203-5 COVENANT AGAINST CONTINGENT FEES

52.203-6 RESTRICTIONS ON SUBCONTRACTOR
SALES TO THE GOVERNMENT

52.203-7 ANTI-KICKBACK PROCEDURES

52.203-8 CANCELLATION, RECISSION, AND
RECOVERY OF FUNDS FOR ILLEGAL OR IMPROPER
ACTIVITY

52.203-10 PRICE OR FEE ADJUSTMENT FOR ILLEGAL
OR IMPROPER ACTIVITY

5§2.203-12 LIMITATION ON PAYMENTS TO INFLUENCE
CERTAIN FEDERAL TRANSACTIONS

52.204-2 SECURITY REQUIREMENTS

52.209-6 PROTECTING THE GOVERNMENT’S

INTEREST WHEN SUBCONTRACTING WITH
CONTRACTORS DEBARRED, SUSPENDED, OR

PROPOSED FOR DEBARMENT

52.212-8 DEFENSE PRIORITY AND ALLOCATION
REQUIREMENTS

52.215-2 AUDIT AND RECORDS - NEGOTIATION

52.213-10 PRICE REDUCTION FOR DEFECTIVE COST
OR PRICING DATA

I:\osr\data wp step'atich_2.doc

Istroduction - 17
Rev. 298

52.215-12

52.215-14

52.215-8

52.215.18

52.222-3

52.222-26

52.222-35

52.222-36

52.222-37

52.223-2

52.225-13

52.227-1

52.227-2

I:osr data'wpisrepiatich_2.doc
Rev. 298

SUBCONTRACTOR COST OR PRICING
DATA

INTEGRITY OF UNIT PRICES

ORDER OF PRECEDENCE

REVERSION OR ADJUSTMENT OF PLANS
FOR POSTRETIREMENT BENEFITS OTHER
THAN PENSIONS

CONVICT LABOR

EQUAL OPPORTUNITY

AFFIRMATIVE ACTION FOR SPECIAL
DISABLED AND VIETNAM ERA
VETERANS

AFFIRMATIVE ACTION FOR
HANDICAPPED WORKERS

EMPLOYMENT REPORTS ON SPECIAL
DISABLED VETERAN AND VETERANS OF THE
VIETNAM ERA

CLEAN AIR AND WATER

DRUG-FREE WORKPLACE

PRIVACY ACT NOTIFICATION

PRIVACY ACT

RESTRICTIONS ON CONTRACTING WITH
SANCTIONED PERSONS

ALT.1- AUTHORIZATION AND CONSENT

NOTICE AND ASSISTANCE REGARDING
PATIENT AND COPYRIGHT INFRINGEMENT

Introduction — 18

52.227-10

52.228-7

52.230-5

52.232-23

52.233-1

52.233-3

52.237-3

52.246-25

52.247-63

52.249-5

52.249-14

52.251-1

I: osrdata-wp srepattch_2.40¢

Rev. 298

FILING OF PATENT APPLICATIONS -
CLASSIFIED SUBJECT MATTER

PATENT RIGHTS - RETENTION BY THE
CONTRACTOR (SHORT FORM)

INSURANCE - LIABILITY TO THIRD
PERSONS

COST ACCOUNTING STANDARDS -
EDUCATIONAL INSTRUCTIONS

ALT. - ASSIGNMENT OF CLAIMS
DISPUTES

ALT.I-PROTEST AFTER AWARD
CONTINUITY OF SERVICES
LIMITATION OF LIABILITY - SERVICES

PREFERENCE FOR U.S. - FLAG AIR
CARRIERS

TERMINATION FOR CONVENIENCE OF THE
GOVERNMENT (EDUCATIONAL AND OTHER

NONPROFIT INSTITUTIONS)
EXCUSABLE DELAYS

GOVERNMENT SUPPLY SOURCES

Introduction — 19

DOD FAR CLAUSES

252.203-7001

252.215-7000

252.233-7004

252.225-7001

252.225-7002

252.227-7013

252.227-7030

252.227-7037

252.231-7000

252.232-7006

liosr'data wp srep attch_2.doc
Rev. 298

DESCRIPTION

SPECIAL PROHIBITION ON EMPLOYMENT
PRICING ADJUSTMENTS

DRUG FREE WORKPLACE (APPLIES TO
SUBCONTRACTS WHERE THERE IS
ACCESS TO CLASSIFIED INFORMATION)

BUY AMERICAN ACT AND BALANCE OF
PAYMENTS PROGRAM

QUALIFYING COUNTRY SOURCES AS
SUBCONTRACTS

RIGHTS IN TECHNICAL DATA -
NONCOMMERCIAL ITEMS

TECHNICAL DATA - WITHOLDING
PAYMENT

VALIDATION OF RESTRICTIVE MARKINGS
ON TECHNICAL DATA

SUPPLEMENTAL-COST PRINCIPLES

REDUCTIONS OR SUSPENSION OF
CONTRACT PAYMENTS UPON FINDING OF
FRAUD

Introduction - 20

APPENDIX 2:

SAMPLE TECHNICAL EVALUATION FORM

SUMMER RESEARCH EXTENSION PROGRAM
TECHNICAL EVALUATION

SREP NO: 99-0828
PRINCIPAL INVESTIGATOR:_Dr.Brian Jeffs
Brigham Young University
Circle the rating level number, 1 (low) through 5 (high),
you feel best evaluate each statement and return the
completed form by fax or mail to:

RDL

Attn: SREP Tech Evals
5800 Uplander Way

Culver City, CA 90230-6608

1. This SREP report has a high level of technical merit 123
2. The SREP program is important to accomplishing the lab’s mission 123
3. This SREP report accomplished what the associate’'s proposal promised 123
4. This SREP report addresses area{s) important to USAF 123
5. The USAF should continue to pursue the research in this SREP report 123
6. The USAF should maintain research relationships with this SREP associate 123
7. The money spent on this SREP effort was well worth it. 123
8. This SREP report is well organized and well written 123
9. I'll be eager to be a focal point for summer and SREP associates in the future 123
10.The one-year period for complete SREP research is about right. 123

11. If you could change any one thing about the SREP program, what would you change:

12. What do you definitely NOT change about the SREP program?

PLEASE USE THE BACK FOR ANY OTHER COMMENTS

Laboratory: AFRL/IFEC
Lab Focal Point: Mr. Stanley Wendt
PHONE: (315) 330-7244

REALIZATION OF A LOW-NOISE MMIC AMPLIFIER AS A MICROWAVE-TO-OPTICS LINK FOR RADAR
APPLICATIONS

Ercument Arvas
Professor

Department of Electrical Engineering and Computer Science

121 Link Hall
Syracuse University
Syracuse, NY 13244

Final Report for:

Summer Research Extension Program

Sponsored by:
Air Force Office of Scientific Research
Bolling Air Force Base, DC

and

Rome Laboratory

December 1999

I-1

REALIZATION OF A LOW-NOISE MMIC AMPLIFIER AS A MICROWAVE-TO-OPTICS LINK FOR RADAR
APPLICATIONS

Ercument Arvas
Professor
Department of Electrical Engineering and Computer Science
Syracuse University

Abstract

A MMIC distributed amplifier with 12-dB small signal gain in 3.1-3.5 GHz band was designed. simulated
and built. A very flat gain in the desired bandwidth is the primary design specification of the amplifier since it is
required to feed an optical system. Distributed amplifier topology is preferred since it is difficult to design very flat-
gain amplifiers using traditional single-stage or multiple stage approach. In addition to flat gain requirement, good
input, and output return losses with a noise figure of less than five dB are to be realized. The GaAs monolithic
circuit technology was used and the foundry process TQTRX of TriQuint Semiconductor was chosen. With this
process, it is possible to have designs with good operating performances up to 10 GHz. The amplifier has 50 Q input

and output terminations.

1-2

REALIZATION OF A LOW-NOISE MMIC AMPLIFIER AS A MICROWAVE-TO-OPTICS LINK FOR RADAR
APPLICATIONS

Ercument Arvas

1. Imtroduction

The use of Microwave Monolithic Integrated Circuits (MMIC) in space hardware is becoming increasingly
common. This is due to several advantages: reduction in mass and size, reliability improvement, repeatability of
performance and reduction of parasitics.

GaAs technology is used in many RF systems. Integrated GaAs technology is involved in cellular phones,
cable TV, and satellite transceiver and in many other wireless data applications. Telecommunications and computing
fields use this technology in fiber optic receivers and high-speed data paths. Factors like linearity, noise
consideration, power efficiency, ease of design and system cost makes GaAs natural for wireless applications. Also
low voltage RF systems favor GaAs technology. The frequency span of the GaAs technology as compared to other
technologies is illustrated in Fig.1.1.

NATURAL GaAs RANGE

GaAs MESFET

]
High Performance Bipolar

————————————— .
e ——— S —— Exotic

900 MHz 2.4 GH:z

W

Frequency

Fig.1.1. Natural GaAs Range [5].

The low frequency nature of silicon makes it useless for applications running in the GHz ranges. GaAs
plays an important role in wireless systems when used with silicon. In today’s wircless systems RF signal
conversion is done in GaAs following the signal processing in Silicon. The main building blocks in this kind of
systems are frequency up or down converters, frequency synthesizers, power amplifiers, low noise amplifiers, and
transmit/receive switches.

GaAs is similar to RF Si Bipolar in terms of cost per area of semiconductor. Same packages and suppliers
in Si technology can be used in GaAs also. GaAs RF integration reduces space and parts count. There arc only 13
layers in GaAs processing versus 21 layers in Si for the same function. Material costs are dropping rapidly. Many
technologies require power efficiency and good linearity/distortion performance. This makes GaAs the most
demanded technology [5].

The design of MMICs must be performed with particular care and attention as circuit tuning is practically
impossible after manufacture, and each design fabrication iteration is very expensive. In addition, manufacturing
process is very long and sometimes it might take one year if one needs to do a few iterations to make a circuit
function properly. Designer should be very careful and check all the design specifications before the real
manufacturing process is started. TQTRX process will be introduced shortly in the following section. Then the
method of MMIC Distributed Amplifier Design will be summarized in Section 3. Finally, the design steps and

simulation results are given in Section 4.

2. TQTRX Process Technology Overview

TQTRX is one of the best process for high performance transceivers. This may not be the best process
option for our purpose but it goes with the Prototype Chip Option (PCO) since the design will be a prototype. The
other processes are HA2 (general purpose RF + power), TQHIP (highest power RFICs), QEDA2 (high-density
mixed mode) {2].

2.1 Typical Applications

TQTRx is a high performance GaAs E/D MESFET based process for RF transceiver applications and
mixed mode applications up to LSI complexity. The process features high performance enhancement and depletion
mode MESFETs for small signal and a depletion mode power MESFET for power amplifier stages. Utilizing a
unique thick plated gold interconnection and highly robust interlayer dielectric, the process is optimized for ease of
automated assembly. This also enables the use of low cost injection molded plastic packaging without special
handling or fixturing. TQTRXx features very high value capacitors for increased density and reduced dic size . It
also features precision NiCr resistors.

Some essential electrical parameters are listed for reference only in Table 2.1.

1-4

Table 2.1. TQTRx Key Parameters [2].

E-mode Threshold Voltage +0.150 V
E Imax (Vds=1.5V. Vesx0.7V) 90 uA/um
E _Cutoff Frequency (Ft @ _Imax/2) 18 GHz
E Transconductance 225 mS/mm
D-mode Pinchoff Voltage -0.600 V
D Idss (Vds=1.5V) 70 uA/um
D Cutoff Frequency (Ft Gm/C) 20 GHz
D Transconductance 200 mS/mm
G (Power FET) Pinchoff Voltage -220V
G Idss (Vds=3.0V) 270 uA/um
G Imax (Vds=3.0V. Vgsx0.7V) 400 uA/um
G Breakdown (Avalanche. Vd=6V) > 15V
Thin Film Resistor Sheet Resistance 50 Q/sauare
G- Implant Resistor Sheet Resistance 600 O/sanare
N+ Implant Resistor Sheet Resistance 100 Q/sauare
MIM Capacitance per Area 1.2 fF/um®
Metal 1 Sheet Resistance 13 m{)/sauare
Metal 2 Sheet Resistance 6 mC)/sauare
2.2 Components

There are eight supported circuit elements in this process. Supported elements are those that TriQuint has
characterized and measure routinely in the PCM. Using structures that are not supported or violating layout rules
may have adverse effects on circuit functionality and yield. Supported devices of various sizes are in the device
library described in section 6 of [2].

2.2.1 Transistors

E-Mode MESFETs with gate lengths of 0.6 to 20 um and widths from 2 pm to 250 pm are supported.
Single gate and dual gate configurations are supported. These FETs have highly doped channels for high
performance small signal and low noise operations. EFETs also feature very low knee voltage and high
transconductance for low power supply voltages down to 1V.

D-Mode MESFETs with gate lengths of 0.6 to 20 pm and widths from 2 pm and 250 pm are also
supported. Single and dual gate configurations are supported. These FETSs are typically used for current sources,
switches, small signal and medium power RF operations.

A second depletion MESFET called GFETs with gate lengths of 0.6 to 20 pm and widths from 2 pm and
250 pm are supported. Single and dual gate configurations are supported. These FETs have very high current and
power capability. Typically, these FETs are used in very large multi-finger arrangements to make highly efficient
power transistors. They are also useful for current sources and high power switches {[2].

1-5

2.2.2 Diodes
N+ Overlap diodes with anodes (using Schottky gate metal) of 3.0 pm long by widths of 2.0 pm to 250 pm
are supported. These are commonly used for level shifting [2].

2.2.3 Resistors

Three resistor types are supported. N+ Implanted Resistors and G- Implanted Resistors have a nominal
sheet resistances of 120 /square and 600 ¥/square respectively. They can be sized with widths from 2.0 pm to 250
pm and length from 2.0 um to any length. These resistors can be used for non-precision uses. Precision NiCr
resistors have a nominal sheet resistance of 50 (¥/square and have the same lengths and widths as Implant Resistors.
TriQuint’s NiCr has a virtually zero temperature coefficient (Tc), so it is ideal for precision applications. Long
meander structures can be used to achieve higher resistance values. It is strongly recommended to use NiCr resistors

wherever possible since implanted resistors are highly sensitive to backgating and width scaling effects [2].

2.2.4 MIM Capacitors
MIM capacitors are formed with a thin silicon nitride layer between Metal0 and MIM metal layers. MIM

capacitors may be sized from a minimum of 5.0 pm per side to any area {2].

2.2.5 Inductors and other Metal Structures
Spiral Inductors and other metal structures, such as strip lines, are easily formed using three metal layers

singly or in combination. The metal layers are encased in an Interlayer dielectric constant of about 3.0 [2].

2.3 Interconnects

There are three interconnect layers. The first layer, called Metal0, is formed by evaporation and lift-off of a
sputtered 0.5um layer of Au. This layer is used for local interconnect to contact Ohmic, Gate, and NiCr. It forms
the bottom layer of the MIM structure and acts as the contact layer for Metall.

The other two global layers are made of plated Au for low series resistance interconnect and high Q
passives. Metall is nominally 2 pm thick and Metal2 layer is nominally 4 um thick. A thick interlayer dielectric
(dielectric constant = 3) is between layers of Metal0 and Metall and between layers of Metall and Metal2. Vias are
etched in the dielectric to provide contact between the metal layers above and below the Vias.

For process reasons, vias between Metal0 and Metall (the Vial layer) are restricted in width to preserve
planarization during processing. Bond pads use a slotted Vial structure to accomplish this planarization
requirement. Vias between layers may be stacked without special allowances provided that wiring pitch and Via

inclusion rules are followed [2].

1-6

2.4 Substrate Vias
Substrate Vias are also available on TQTRx.

2.5 Chip and Reticle Dimensions

2.5.1 Chip Thickness

Wafers are initially 25 +/-1 mils thick. Wafers can be thinned to a variety of nominal thicknesses after
front end processing. Thicknesses of 20, 10, or 7 mils are standard. If the Die is going into a commercial plastic
package then it must be 7 mils [2].

2.5.2 Chip Size and Orientation
The chip size is defined as dicing street center to dicing street center and should be rounded up to the
nearest 1 mil (1 mil = 25.4um). Gates may be oriented either parallel or perpendicular to the flat. The maximum

recommended aspect ratio is 2:1 [2].

2.5.3 Reticle Size

The reticle size is defined as the dicing street center to dicing street center and should be rounded up to the
nearest 1 mil. The size of the reticle field is a multiple of the chip size. The maximum field size is 580 mils X 580
mils [2].

2.6 Process Control Monitor Size and Placement
PCMs are available in three configurations: Horizontal, Double and Rectangular. When Substrate Vias are
used, a Substrate Via Module must be added. There is one PCM per reticle field. The following area needs to be

allowed in each reticle field for one of the following PCM sizes:
Table 2.2 [2].

Horizontal ' 575 X 21
Double 291 X 34
Rectangular 135 X 61
Substrate Via Module 66 X 39 (Additional)

These sizes are correct at the time of printing. These sizes are subject to change [2].

3. MMIC Distributed Amplifier Design Methodology
The principle of distributed (or travelling-wave) amplification using discrete transistors is a technique
whereby the gain-bandwidth product of an amplifier can be increased. In this approach, the input and output

1-7

capacitances of the transistors are combined with lumped inductors to form artificial transmission lines. These lines
are coupled by the transconductances of the devices. The amplifier can be designed to give a flat, low-pass response
up to very high frequencies. The method used here follows [4] very closely.

Distributed GaAs FET (or MESFET in MMIC area) amplifier designs can provide very flat gain from dc to
over 20 GHz ~ a very significant result. Other technologies above 20 GHz are also available like pHEMT or InP.
Distributed amplifiers have been constructed with GaAs MMIC fabrication techniques, because the small size of the
MMIC lends itself to the construction of a distributed amplifier. However, a successful distributed amplifier also
may be constructed using hybrid techniques. The reason that distributed amplifiers offer outstanding gain-bandwidth
products is that they are not matched amplifiers and therefore not subject to Fano’s bandwidth limit. A distributed
amplifier works on a different concept, called travelling wave amplification.

The topology of the distributed amplifier is particularly suited to Monolithic Microwave Integrated Circuits
because its passive circuit predominantly consists of inductors which can be realized in the form of short lengths of
microstrip lines. The design of the distributed amplifier involves a careful choice of the variables, such as the device,
the number of devices, and the impedances and the cutoff frequencies of the lines, to obtain the desired frequency
response. Broadband MMIC distributed amplifiers using GaAs MESFET have been used since 1980’s. A
schematic representation of the FET distributed amplifiers is shown in Fig.3.1 [4].

N

T4 — g

— N
—_—

Fig.3.1. Schematic of FET distributed amplifier.

The gate and drain impedances of the FET’s are absorbed into the lossy artificial transmission lines formed
by using lumped inductors as shown. The resultant transmission lines are referred to as the gate and drain lines. The

lines are coupled by the transconductances of the FETs [4].
1-8

An RF signal applied at the input end of the gate line travels down the line to the terminated end, where it is
absorbed. As the signal travels down the gate line, each transistor is excited by the travelling voltage wave and
transfers the signal to the drain line through its transconductance. If the phase velocities of the travelling waves on
the gate and drain lines are identical, then the signals on the drain line add in the forward direction as they arrive at
the output. The waves travelling in the reverse direction are not in phase, and an uncancelled signal is absorbed by
the drain line termination [4].

Lg Rg Cgd Rd Ld
_I'WV__/\/\/\, 11 W
+
Rgs | Cags Rds Cds
Ve ¥ I=VcY&> -
NN\ Ym=gme™™"
Rin
Rs
Ls

Fig.3.2. Equivalent circuit of 2a MESFET [2].

An equivalent circuit of a MESFET is shown in Fig.3.2. Ry, is the effective input resistance between the
gate and source terminals and C,, is the gate-to-channel capacitance. Ry and Cg, are the drain-to-source resistance
and capacitance respectively. Cyq is the drain-to-gate capacitance and gy, the transconductance [1]. Here, we will
start to elaborate the design equations for designing distributed amplifiers [4].

The shunt capacitances of the gate line are provided by the gate capacitance, Cgs, of the FETS. The shunt
capacitors of the drain line are provided by the FET’s drain capacitance, Cps, plus the supplemental value, C,.

The characteristic impedance of the gate line and the drain line are equal and given by

_|L _|L
£y n\f%os —\/ %DS +C1) G-D

where Lg and Ly, are the inductances per section of the gate line and the drain line, respectively. To produce useful

gain, it is very important that the drain currents generated by each individual FET add in-phase as the signal moves
along the drain line toward the amplifier’s output. Therefore the phase shift between FETSs along the drain line must

1-9

be exactly the same as the phasc shift between FETs along the gate line [4]. The phase shift of a single section of
artificial transmission line is given by

O, = 27fr, (3.2)
in the gate line, and by
O, =27f7, (3.3)
in the drain line where 7 is the gate line time delay per section, and 7, is the drain line time delay per section.
The condition that will ensure constructive interference of all FET currents, at all frequencies, is
D, =0, 34
or
Ts =Tp (3.5
Now, for any artificial transmission line, the delay per section is equal to JL_C ; therefore equation (3.5) can be

written as

\/LGCGS = \/LD (CDS +C1) (3.6)
For a realistic amplifier, the impedance conditions, (3.1), and the phase conditions (3.6) must be satisfied

simultaneously. Simultaneous solution is given by

Lo=L,=L (3.7)
and

Cos =Cps +C, 3.8)
or

C, =Cy4 —Cpy (3.9)

A third condition that must be imposed if the amplifier is to work in a 50 Q system is

Z,=50=./L/Cgs (3.10)

or

L=50>C (3.11)
We are in a position to calculate the gain and bandwidth of a distributed amplifier. Ideally the bandwidth will be
from dc to a frequency a little less than the cut-off frequency, £, of the gate and drain artificial lines. The cut-off

frequency is given by

f = _ (3.12)

The current out of each FET adds in-phase along the drain line and is divided equally between the output and the
termination. The gain of a distributed amplifier (neglecting loss) is very simply one half of the output current per
FET times the number of FETs, times the load resistance, divided by the input voltage:

G=V,, v, ="Beli% 2 (1)
v,
or, in decibels
G=20 log,o(ng ;ZOJ (3.14)

where

n is the number of sections (same as the number of FETSs)
Z,, is the input and output characteristic impedance (50 €2)
g, is the transconductance of an individual FET

Equations (3.12) and (3.14) are elegantly simple expressions for the cut-off frequency and the gain of a distributed
amplifier. Multiplying these expressions together yields the maximum gain-bandwidth (GBW) product of a

distributed amplifier:
Z
GBW = 1 n °g'"j= "E m (3.15)
7Z,C s 2 27C 54
The cut-off frequency of the individual FETs, f, , is
Em
= 3.16

’ 27C 55 ¢19
Therefore,

GBW = nf, (3.17)

This important result simply states that the maximum gain-bandwidth product of an ideal distributed amplifier is
equal to the cut-off frequency of its individual FETs times the number of FETS [4].

Gain and bandwidth may be traded off by changing the gate width, w, of the individual FETs. For a high
cut-off frequency, use a small Cgs, corresponding to a small gate width. Under these conditions, n must be raised to
build up the gain, because g, will be low in the individual FETs. This is why high-frequency distributed amplifiers
use many small FETs. The value n=6 or 7 is not unheard of in amplifiers operating to 20 GHz or more. At low
frequencies only a few FETs are used, but they are proportionally larger [4].

To predict the correct size FET for an arbitrary cut-off frequency and gain, the concept of FET equivalent
circuit parameters normalized to width is introduced [4]. Define these parameters as follows:

g, =wg, (3.18)
1-11

Cys =wC g (3.19)

Ipes =Wl s (3.20)
where
g;n is the FET’s transconductance per unit width
C ('33 is the FET’s gate capacitance per unit width
I 5 is the FET’s saturated drain current per unit width
Using the definitions in (3.18), (3.19), (3.20) and (3.12), we can rewrite the amplifier’s cut-off frequency as
= ! (3.21)
* aZwCoy '
or
1
W= ———— (3.22)
7Z,Cosf.
The individual cut-off frequency is independent of FET width because
&n wg m
f = = = £ : (3.23)
27C5s 2mwCye 27C g
Therefore, the maximum gain-bandwidth product always is given by (3.17) as
GBW =Gf, = nf, (3.24)
which is independent of gate width. In terms of decibels, gain is equal to
n
G=20log, (—f{LJ (3.25)

The value of the inductance in the artificial distributed lines may also be calculated from the cut-off frequency by
going back to the expression for impedance (3.1):

Z,= \IL/CGS = ‘\’L/WC;;S

or

L
wC g

Zl= (3.26)

Combining with (3.22)

Zi= —————”Z"C,GSf L (3.27)
Cos

After canceling Z, and Cgs , and solving for L, we have

L= % (3.28)

The dc current of any distributed amplifier may be calculated in a similar way. Assume that the FET’s are to be
biased at

I
Ig= DZSS (3.29)
The drain-to-source current of an individual FET is
wl,
I ps = -—ZD‘S'-‘?- (3.30)
For the entire amplifier,
mwi
I, =nl, =—2>2% (3.31)
2
From (3.17),
Gf, = nf, (3.32)
or
G
n= 7{— (3.33)
t
Combining with (3.22) and (3.23) yields
Ipss
1, =G=—"— (3.34)
Z,8m

Following the above steps, one can start to design a distributed amplifier with the design manual of the
foundry that will be used in hand. The first movement should be the choice of proper biasing condition (which
defines a set of model parameters for the Field Effect Transistors). The set of model parameters given for a certain
bias condition are inserted into the linear FET model of a powerful simulator such as HP EEsof Series IV RF
simulator with proper choice of drain and gate line inductances and other lumped element components. If the
optimization does not give results close to the design specifications different set of model parameters for the
transistor models and lumped components should be tried. This iterative procedure is continued until no further

1-13

parameter is left to choose to improve the performance of the circuit. A mature understanding of above concepts
should be obtained to handie the design comfortably.

4. Design Steps and Results

4.1 (3.1-3.5 GHz) Distributed MMIC Amplifier Design Details

Steps included in a general MMIC design is as shown in Fig.4.1. More detailed design guidelines are given
in [3]. Our design uses the algorithmic design approach summarized in Fig4.1.

Design
Spedification
Component X
& hm o Crcuit
Litraries " | Description
Analysi
Models > ™ ’
\4
Optinization ,
v
Verification >
Optional Branch | Falrication

Fig.4.1. MMIC Design Process.

4.2 Design Specifications

Frequency Band :3.1 GHz-3.5 GHz | Noise Figure 1< 6dB

Small Signal Gain :12dB Stability : Unconditionally stable
Input Reflection Coefficient :<-10dB Technology : GaAs MMIC

Output Reflection Coefficient :<-10dB Gain Flatness :+0.5dB

Amplification Method : Distributed Amplification

Of the above specifications, the gain flatness is the most important one. The reason for choosing the
distributed amplification method from among some other methods is that one can design a high-bandwidth
distributed amplifier with acceptable gain variation in the band of interest and choose a portion of the band where
gain variation is small. Noise figure is the second most important requirement to be realized since the output of the
system will feed an optical system. Low input and output reflections guarantee that the power loss due to
mismatches is minimized. In addition, the device should be highly robust in terms of stability.

4.3 Circuit Description

The circuit schematic generated in HP EEsof Series IV is as in Fig.4.2.

e ———{ - 3 { |- -
\ ar
-~ R4
- - - =
ey XY wsimeSUE wsug=sua wsuR=suE

e

Fig.4.2. Circuit Diagram of the Three-Stage Distributed Amplifier Using Transmission Lines.

1-15

Labels W,Li (i=1,2,3) over each transmission line shows the width and the length of the transmission lines,
respectively. Transmision lines are microstrip and substrate model is given as follows. Capacitors labeled as CB are
drain and gate line MIM (metal-insulator-metal) blocking capacitors. Their value is chosen to be high such that they
will be open at DC and almost short at the frequency band of interest. Resistors R1 and R2 are NiCr resistances
with 50 Q values. Each dotted rectangle around the transistors includes the complete linear FET model given in the
design manual of the foundry. Table 4.1 summarizes all the component values and physical dimensions of the

transmission lines used in the circuit.

Table 4.1. Circuit Component Parameters for the Distributed Amplifier.

Parameter Name Dimension
W (transmission line widths) 12 pm
L1 (transmission line type #1 length) 1354 pm
L2 (transmission line type #2 length) 937 pm
L3 (transmission line type #3 length) 555 pm
CB (MIM blocking capacitance) 10 pF
R1 (NiCr termination resistance) 50Q
R2 (NiCr termination resistance) 50 Q2

Transmission line substrate media parameters are shown in Table 4.2.

Table 4.2 Substrate media parameters.

Parameter Name Value
€ Dielectric constant 12.9
H Substrate thickness 101.6 pm
T Metal thickness 2pm

The lumped elements shown at the terminals of each FET are included to complete the model of the simulator to the
model supplied by the foundry. Transistor model parameters together with the lumped elements are shown in Table

4.3.

Table 4.3. Transistor model parameters .

Parameter Name Value
Vs 30V
Vs 06V
Lgs 20.1 Ma
Ces 0.7455 pF
Cas 0.0778 pF
Cua 0.0382 pF
Cae 0 pF
Ry 408.16 Q
G, 1/R,
Ry 338.10Q
Em 0.082360 S
tau 3.815Ps
Rin 0.9887 Q
R, 1.096 Q
R4 0.1354 Q
R, 36Q
L, 0 nH
La 0.0127 nH
L, 0.0104 nH

4.4 Analysis and Optimization

With the theoretical knowledge discussed in section 3 of this report, design parameters are started with
some rough parameters for the transistors and other circuit components. Linear FET model (see Fig.3.2) parameters
is the basic requirement to start the design. In MIC (Microwave integrated circuits), the designer does not have
much freedom of using lumped components while a MMIC designer can go either with lumped or distributed
elements. Since distributed element approach gives smoother gain and refiection responses and lumped elements are
only good in a certain range of frequencies, distributed element design approach is adopted in this design. The term
distributed should not be confused with the distributed amplification where the latter is just an amplification method.
Transmission lines in MMIC circuits are just pieces of metal stripes with a certain length and width on top of a
dielectric substrate (see Fig.4.2). The thickness and dielectric properties of the substrate depend on what foundrty
one works with and what process of that foundry is used. Therefore, working wiih different foundries one gets

different circuits functioning in the same manner.

1-17

Metal

S.1. GaAs S.I. GaAs

f

Ground Plane

COPLANAR MICROSTRIP
WAVEGUIDE

Fig.4.2. Microstrip Transmission Lines in a MMIC Device [4].

The impedance of the line is determined by the ratio of the conductor width to the substrate thickness. An
impedance of 50 Q is generally preferred for input and output transmission lines. The transmission line must be
sufficiently thick to carry the required current without significant ohmic losses (at least two skin depths thick). If the
lines are to carry DC current, the line widths should be sufficient to support the current density.

The first step in the design was to estimate the lengths of transmission lines used in the distributed
amplifiers using the theoretical approach described in Section 3 of this report. In the design manual supplied by the
TriQuint semiconductor, there are some premeasured linear FET models tabulated for different bias conditions. The
simulation program (HP EEsof Series IV) contains a linear FET model that is very close to the exact linear FET
models supplied by TriQuint. The only difference is the contact resistances and inductances. These additional
model parameters are included in the design by adding lumped inductors and resistors in the terminals of the FETs
as having the same values given in the model of TriQuint.

After the primary simulation results were obtained in the band of interest, the optimization tool of the

simulator is used to get the required response. The optimization criteria are given in Table 4.4.

Table 4.4. Optimization criteria

Optimization Variable Optimization Geal Optimization Weight
NF (dB) <3(dB) 10
S21(dB) =12 (dB) 80
S11(dB) <-10 (dB) 10
S21(dB) <-10 (dB) 10

The optimizable variables in the design are transistors parameters (restricted to the values given by the
foundry), the width and the length of the transmission lines. The width of the transmission lines is set to a minimum
such that there will be no problem in carrying the DC current . Trying different operation modes and different bias
conditions does not affect the performance very much so it is not also practical to optimize the model parameters of
the transistors. The only optimizable parameter is , therefore, the length of the transmission lines. The lengths of the
transmission lines cannot be lower than 7 um under the given bias conditions.

There are also some other constraints, the most important of which is the length of the transmission lines in
between the drains and gates of the transistors. In the optimization, it is considered that the transistor layout that will
replace the model of HP EEsof Series IV is a 6 finger FET layout (each finger has 50 pm width) with a rectangular
shape. To be able to interconnect the drain and gate points of the transistors, the lengths of the transmission lines
should not be less than a minimum which depends on the transistor size. This brings a lower limit to the
transmission line lengths that are the only optimizable variables in the design. As can be seen from the above
discussion, a MMIC designer has to deal with many parameters overlapping with other phases of the design.

4.5 Simulation Results

During the design, different sets of transistor model data from the design manual are tried to get as much
close as possible to the desired response. If the bias conditions under which the model parameters are obtained are
satisfied in the band of interest, circuit must function in well agreement with the design specifications. After several

runs of the optimization tool, responses of the design are obtained as in the following figures.

- —

- ——

_ _ _

i i i

_ i i

i i i

i i i

i i i

1 I . H
T i i i

........ S R o

H H H

! | i

i i i

i i i

; m m

p ; H H
i i i

i i i

H H H

[}]]

- - e - — - —— g o —— - — - —p—— - - —— - — -

e - e - - — e - = S —— R e T ———

3.5

20.0

10.0 ¢

0.0 1

Frequancy 0,1 GHz/DIV

Fig.4.3. Small signal gain and input reflection coefficient in dB.

1-20

?
i
i..._.._..-.._.._.._..-
i
I
i
f

- e - o — e —g_ - — e m—— = —— - —— -

e e = e e = = —— = e B = —— . ———

.0

15
1¢0.0 1

550 T

Freguency 0,1 GHz/DIV

Fig.4.4. Small signal gain and output reflection coefficient in dB.

1-21

Frequency 0,1 GHz/DIV

Fig.4.5. Noise Figure in dB.

1-22

o - e = — e —— e e = ——

e - o — e - - —— - - — -

3.5

- g o — e — = g e —— W Sy e o e o= e

— - - — - — - — - — o

1

3.

3.2
2.8

2.0

Fregquancy 0,1 GHz/DIV

Fig.4.6. Stability Constant K.

1-23

b o — e — - — . o A . —— - ——

C.40

Frequency 0.1 GHz/DIV

Fig.4.7. Noise Resistance in Q.

1-24

3.5

f o e e o e ——— —— = e o —— o —— = e = e g —_——— e — -

Froguancy 0.1 GHz/DIV

f o —— e — . e e e e e e e e = — b m e - - — o —-

1

3.

1800, 0 deemromeemermeemenmem
1530.0
1500.0
LT NN 1 S WU RS S —
1404.0

1700.0
165C¢.0 -

Fig.4.8. Group Delay in ps.

1-25

As it can be seen from the figures, the responses are in very good agreement with the design specifications.
The next phase is to generate the layout of this device on a GaAs substrate using a software called ICED. Before
going into the layout phase the bias circuitry will be discussed shortly.

4.6 Bias Circuitry

As seen in Figure 3.1, both the gate line and the drain line circuits are DC isolated from their terminations
by a blocking capacitor, Cp. A good way to bias a distributed amplifier is to use two DC supplies (i.e., a positive
supply for the drain circuit and another bias for the gate circuit). A technique must be developed for applying these
voltages to their respective lines without disturbing the RF performance. A very straightforward technique for doing
this is to provide off-chip inductive bias chokes connected directly to the amplificr’s input and the output terminals,

as shown in Fig. 4.9.

LU
— Cs
Vis O—
Choke
Inductor
RFout
DISTRIBUTED
RFin
AMPLIFIER
Choke
Inductor
O-Vgs
Cg —
77T

Fig.4.9. Simple off-chip bias network for the MMIC distributed amplifier [4].

1-26

An alternative on-chip bias scheme would involve placing both a gate bias choke and a drain bias choke on the chip.
These chokes would be spiral inductors. The reactance of such devices must be at least 100 Q at 3.3 GHz. Their
inductance is calculated as

Le =——————100 5 =5.134nH
27(3.1.107)

To design a 5.13 nH spiral inductor that is resonance free over the entire 3.1 to 3.5 GHz band is not very
difficult. Since this project is a prototype for the real device, the off-chip-biasing scheme, which is the easier one, is
preferred. With this bias scheme, it is possible to play with the bias components in case of unsatisfactory responses.
For the real design, an on-chip bias scheme should be preferred since no bulky bias circuitry is acceptable in the

application area of this device.

4.7 Layout

In this phase of the project, the layout editor called ICED (IC Editors, Inc.) is utilized to generate the
GDSII stream file to be sent to the foundry to be manufactured. The TQTRx device library is available in a GDSII
STREAM format file. Some subcells previously generated by the engineers of the foundry are supplied with the
design manual of the foundry process. In the layout, following subcells are used.

xHSABFET : FET, Multi-finger FET, Width=6 X 50 um, RF Probe Pads
C25X25 : 25 pm x 25pm effective area, C = 0.75 Pf
RN10 ¢ NiCr resistor, L=10 pm, W=10 pm

The elements in the device library of the foundry are used as templates. The size of the elements is
stretched according to the rules given in the design manual. Violating these rules can have very adverse effects on
circuit functionality and yield. TriQuint provides a design rule check (DRC) rule set for IC Editors “The DRC”.
This low cost software for PC is used in conjunction with IC Editors ICED-32™ Layout Editor.

xHSABFET subcell is used as it is while the other two subcells are modified to get the values in the circuit
file. Final layout of the circuit is shown in Fig. 4.10. The manufactured piece has arrived at the end of the project
duration leaving no time for testing. We plan to perform measurements on the piece and compare the real

performance with the simulation results.

1-27

502 6GGER

Fig.4.10. Layout of the MMIC Distributed Amplifier.

1-28

5. References

1} James B. Beyer, et.al., “ MESFET Distributed Amplifier Design Guidelines” IEEE Trans. Microwave
Theory Tech., vol. MTT32, PP. 268-275, March 1984, '

121 GaAs IC Design Manual, Triquint Semiconductor, 1999.

3] Design Guidelines for Microwave Monolithic Integrated Circuits, Author: G.Gatti (XRM), Reference
XRM/017.95/GG, Issue 3 Rev.0, Dated 25 Sept. 1995.

4] MIC & MMIC Amplifier and Oscillator Circuit Design, Alan Sweet, Artech House, Boston-London,1990.

5] GaAs IC Design Class Manual, Triquint Semiconductor,1999.

6. Acknowledgements

I wish to thank AFOSR for the SREP and to Dr. Richard Michalak and Mr. Michael Little of Rome Lab for
various discussions and inputs. The problem addressed here was an excellent example that was used as a class
project in educating my students taking the “CAD for Microwave Circuits” course. Special thanks are to my student
Mr. Ertan Zencir who performed most of the simulation work as his class project. I also want to thank the other
students in the class for many valuable discussions and inputs. I want to thank HP and Ic Editors for using their
software in our class and TriQuint for manufacturing the amplifier.

1-29

DETECTION OF ACOUSTIC CORRELATES OF STRESS FROM THE
MODULATION CHARACTERISTICS OF SPEECH

Kaliappan Gopalan

Professor
Department of Engineering
Purdue University Calumet

Hammond, IN 46323

Final Report for:
Summer Research Extension Program
Air Force Research Laboratory

Rome Research Site

Sponsored by:

Air Force Office of Scientific Research
Bolling Air Force Base, DC
AFRL, Rome Research Site

and

Purdue University Calumet

January 2000

2-1

DETECTION OF ACOUSTIC CORRELATES OF STRESS FROM THE
MODULATION CHARACTERISTICS OF SPEECH

Kaliappan Gopalan

|
Professor 1‘
Department of Engineering |
Purdue University Calumet i

Hammond, IN 46323

Abstract

The effect of workplace stress on certain speech parameters of the AM-FM speech model was studied in this project.
Correlation between demodulated amplitude and frequency based parameters and the heart rate of a fighter aircraft
flight controller was investigated. It was found that the peak frequencies in the spectrum of the amplitude envelope
(AE) in the AM-FM model followed F0, the fundamental frequency of voicing, regardless of the center frequency of
analysis. This tracking of FO gives a qualitative estimate of stress level relative to a neutral state of stress with no a
priori knowledge of FO or formants. Additionally, the mean and median values of FO estimates from the spectra of
the AE were found higher at lower or higher heart rates than neutral rate. Formants estimated from the
instantaneous frequency, on the other hand, increased or decreased with heart rates depending on their indices - F3
decreased with heart rate while F4 increased. Similar results were observed from the utterances of an F-16 pilot in

an aviation emergency.

2-2

DETECTION OF ACOUSTIC CORRELATES OF STRESS FROM THE MODULATION
CHARACTERISTICS OF SPEECH

Kaliappan Gopalan

I. Introduction

Analysis of physiological stress of speakers based on their speech utterances is important in many
applications. Response by an emergency management team, for example, may be tailored to the needs of the caller
based on the level of stress detected from the caller’s speech. Detection of physiological stress at a workplace such
as an aircraft is important in assessing the ability of the worker and assigning tasks accordingly. Stress detection
based on speech enables monitoring of stress nonintrusively and, in general, without the cooperation of the speaker.
Other applications include detection of deception in speech for law enforcement use based on emotional state, and

implementation of natural-sounding speech synthesizers.

This report presents the results of analyzing certain modulation characteristics as a function of the heart rate
of fighter aircraft pilots. Additionally, the variation of modulation features as a pilot undergoes an operational

emergency is discussed.

I1. Modulation Behavior in Speech

Motivation for the analysis of speech using amplitude and frequency modulations was provided by the
observation by Teager and Teager [1, 2] that modulation process dominates the production of speech. Teager and
Teager showed that in addition to the frequency modulation causing instantaneous frequency variations, speech
resonances also have time-varying amplitudes. Other researchers postulated that human auditory system uses
transduction of frequency modulation (FM) to amplitude modulation (AM) using the spectral shapes of auditory
filters [3]. Based on the results of these works, the many nonlinear and time-varying phenomena during speech
production have been modeled successfully by an AM-FM modulation model representing each of the resonances or

formants [4, 5].

In the case of a speaker under stress, increased activation of the sympathetic nervous system or the
parasympathetic nervous system is observed to occur when the speaker is angry, fearful, sad, etc [6]. This increased
activation leads to change in heart rate and blood pressure, and also to tremor in muscle activity. Consequently, the
articulatory and respiratory movements for speech production are affected. The spectral characteristics of the
resulting stressed speech are, in general, observed to have increased fundamental frequency F0, increased amplitude,

and decreased speech duration. The extent of variation in F0, however, has been shown to depend on the speaker

2-3

and the type of stress. Other manifestations of stress in speech include variations in the formants and their

bandwidths, increase in high frequency energy, and changes in the glottal pulse shape.

In addition, studies have shown that in stressed speech, the fundamental frequency of excitation and
formants have higher variations in their instantaneous values than in neutral speech. Therefore, an analysis of the
variation of FO and the formants is expected to bring out the frequency variations due to stress. Maragos et al [7]

observed that the time-varying instantaneous frequencies and amplitudes can be extracted from the multicomponent

AM-FM models.

The AM-FM model represents speech around each formant F as a damped AM-FM signal given by [4, 7]

x(t)=i a, (f)cos(w,t + @, (1)) (D

where N represents the number of formants in the speech signal x(t). a, () is the time-varying amplitude of the

sinusoid at the k™ formant frequency o, with the total instantaneous frequency of @, =0, + —?d—k— Both the
t

instantaneous frequency (IF) and the amplitude envelope (AE) around a formant are derived from the Teager energy
operator [1, 2]. Because of the unlimited number of combinations of AM and FM that can give rise to the

modulated signal at each formant, the modulation model given in (1) must be analyzed separately at each formant.

Representing the discrete-time version of a speech signal band-pass filtered at the center frequency f, =

o./21 by
s(n) = a(n) cosd(n)

or
s(n) = a(n)cos(Q.n+Q,, ':[q(k)dk), @)

the instantaneous frequency €; given by

dd(n)

Qi (n) = = Qc + qu(n) (3)

where Q,, is the maximum frequency deviation from Q..

One of the most commonly used methods for obtaining the IF and AE employs the nonlinear energy
tracking operator devised by Teager [1, 2]. Using the algorithm formulated by Kaiser, the Teager energy of a
discrete signal s(n) is calculated by the operator ¥(.) given by [8] '

Yis(m]=s*(n) = s(n—Ds(n+1) @

From the energy operators of a speech signal and its time-shifted versions, the instantaneous frequency Q; and the

amplitude envelope |a(n)] are calculated using the energy separation algorithm [5, 7] as

0, ()~ arcsin Jz//[s(n+l) —s(n-1)])
' dyls(n)]
| a(m) = 2¢Ls()] ©

Juls(n+1D)]-yls(n-1)]

Preliminary studies of the IF and AE showed that features based on the above AM-FM demodulation
model may indicate variations in the emotional stress of the speaker [9]. In particular, the spectrum of AE showed
higher peak frequencies at higher levels of stress; additionally, the spectra of both IF and AE, in general, followed
the fundamental frequency FO. Since FO is a significant indicator of stress [10-13], an estimation of FO from the
demodulation features is expected to provide a correlation with stress. Moreover, demodulation features leading to
FO estimation — such as the bandwidth of IF around the center frequency Q,, jitter in F0, etc. - may also vary in

proportion to stress.

Based on this premise, the results of analysis of correlating a measured stress factor with AM-FM based

features are reported in this study.
III. Utterances Used in the Study of Stressed Speech

Speech files from two databases, both from the NATO Speech Under Stressed Conditions CD, were used
for this study. The first set of files from SUSC-1 contains speech utterances from nine male European (non-English
native) fighter controllers that were recorded during communication with fighters. Various stress factors, such as
systolic pressure, diastolic pressure, carbon dioxide and heart rate, were measured during the interchange. For the

present study, heart rates were chosen to relate with speech features because of the nonavailability of other

2-5

measurements for some of the speech files in the database. Each speech file in the database was encoded in 16 bits

per sample at a rate of 16000 samples per second.

The second speech file analyzed came from an operational aviation emergency, also available in the SUSC-
0 CD. This file is discussed in Section V.

Since the database has continuous speech with a large vocabulary of words, it was necessary to choose an
utterance that occurred frequently and at varying heart rates for each speaker. Three different heart rates with as
large a variation as possible among them were chosen for each speaker. It was found that the utterance “ull 's eye”

most commonly occurred with three different heart rates for many of the speakers.

Using Entropic Waves+ package, the utterance “bull’s eye” corresponding to each of three different heart
rates was extracted for a speaker. From these three files, utterances for the sound “eye” were used for correlating

AM-FM based features with known heart rates.

IV. Analysis of AM-FM Features with Heart Rates

Inasmuch as the fundamental frequency F0 is commonly observed to rise in stressed speech, modulation
features must correlate with the changes in FO as stress level changes. Table I lists the range of FO and the formants

for speaker RD. Clearly, the difficulty of using FO alone for detecting heart rate variation is illustrated by this

Table I
Range of fundamental frequency and formants for the utterance “eye”
for speaker RD at three heart rates

Frequency | AtLow Heart At Medium At High
Rate (72.27) Heart Rate Heart Rate
(RD41) (76.49) (77.29)
(RD21) (RD55)
FO, Hz 124 - 128 106 - 110 173 - 203
F1, Hz 581-779 622 - 773 616 - 711
F2,Hz 1274 - 1632 1282 — 1649 1411 - 1541
F3,Hz 2234 -2533 2198 -2490 | 2421 -2498
F4,Hz 3331-13560 3470 - 3655 3568 - 3607
F5,Hz 3499 — 5051 4652 - 5915 4121 - 5030

2-6

table. Although the high heart rate of 77.29 corresponds to high values in the fundamental frequency in speech,
medium (76.49) and low (72.27) heart rates do not have proportionally lower values of F0.

Morlet w avelet, K = 11E5, fc = 3000 Hz, 201 samples

1 T T T T T T
| I] |) }
| I] 1\ |] 1
05| o T L SR -
1 I] i
.g | I 1 ! 1
2 0fL-__. ‘ + — f e]
g ! 1 i i)
< i | l : | I
05 ___._ 4 ———— R _-——— bR —— - - === +m—_—— - R .|
| ! ! 1 1 I
!] t 1 1]
] i ' 1 { 1
-1 L :] |] | 1
-8 -6 -4 -2 0 2 4 6 8
Time, ms
Spectrum of w avelet
100
] f I T] I I
] I I 1 | i 1
0 t : I |] :
m ! 1
o | 1
%- -100 :
2 0
e -200 t
()] []
g !]
-300 : 2
| t] | 1 i i
I I] 1 1 | 1
-400 L I It [1 1 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Frequency, Hz

Fig. 1. Wavelet at 3000 Hz and its spectrum

Analysis of AM-FM demodulation features was carried out with narrow bands of speech signals
corresponding to the three different heart rates. Narrow band speech signal at center frequency f, was obtained by

bandpass filtering the utterance “eye” using the discretized Morlet wavelet function,

h(t) = e cos(2f.1)

@)
which has an effective RMS bandwidth of
K
BW= ,|— . (8)

Typically, a bandwidth of approximately 400 Hz to 600 Hz is chosen for use with the Teager energy and energy
separation algorithms. At this bandwidth, demodulation is restricted to the chosen center frequency or formant with

negligible effects from neighboring formants [14].

Initially, demodulation-was carried out at an arbitrary frequency of 3000 Hz. We note that this frequency
falls outside of any formant for the speaker. This choice of arbitrary frequency f, was used to determine the ability
of the modulation model in estimating the fundamental frequency and other features without the need for analysis at
estimated formants. Values of K = 1.1E6 and f; = 3000 Hz were used in (7) for the bandpass filter wavelet function
to get a bandwidth of 418 Hz. Fig. 1 shows the wavelet and its spectrum. '

As an example, the speech signal for the utterance “eye” at medium heart rate of RD and its bandpass

filtered version are shown in Fig. 2 along with their spectra.

Speech at medium heart rate - RD21 Fitered speech
3000 [
I
2000 X
1000 N
0 H " d
-1000 T
-2000 : .' l I)
0 0.02 0.04 0.06 0.08 0.02 0.04
Time, s Time, s
x 10¢ Spectrumof speech x 10° Filtered speech spectrum
t | I 8] I
I | ! I |
) ¢ ' 6L L]
i] 1 1 1
T T | :
! 1 ! aLo W Lo
I | I 1]
| _I _____ l_ . L _____) i
W ! ,' 2L ... D ! [b
i(k I 1 : ,'
LU : 0Lt :
2000 4000 6000 8000 0 2000 6000 8000
Frequency, Hz Frequency, Hz

Fig. 2 Original (left), and bandpass filtered (right) speech and their spectra

Using the energy separation algorithms outlined in (5) and (6), the AE and IF for the bandpass filtered
signals at low, medium and high heart rates were obtained. These are shown in Fig. 3. The amplitude envelope in
each case shows a dominant variation at the rate of the fundamenta! frequency. This can be seen from the dc-
removed spectrum of the AE for each case in Fig. 4. The peaks in the spectra and the harmonics - at 125 Hz, 105 Hz

and 180 Hz, respectively, for the low, medium and high heart rates - correspond to the fundamental frequencies

2-8

estimated using Entropic Xwaves package. Hence, the modulation model provides a method of estimating the
fundamental frequency by demodulation using energy separation. The significance of this estimation is that
demodulation can be performed at an arbitrary “carrier” frequency (i.e., the center frequency of the bandpass filtered
speech). Clearly, demodulation at any convenient frequency eliminates the need for a priori knowledge of the
formants for analysis. Since thé formants and their bandwidths vary with stress, FO estimation without formant
information helps identify speaker’s stress at least qualitatively. The spectrum of IF, however, showed a distinct

peak around FO only at low or medium stress level.

x 10* Low (RD41) Low (RD41) .
4000
¥
g 3000 | o]
g | |
o 1 |
o ! 1
u 1 ! t
2000 I L A
0 0.0% iugi?é 1)0.06 0.08
4000 :
] |
B I ? 1
>‘; | | I
2 30001 ']
g I I
3
o 1]
Q 1 1 t
w ' 1 |
2000 ; ! I
0 0.02 H'lgho(ﬂ&S) 0.06 0.08
4000 | : |
: : H { ; l
q 1 >-. [1
2L _ai,_! N 9 3000 ; | A
AT | o) i I
R E
Co 1 o ! i l
fo l | 2 1 1 |
i, N I w i 1 I
0 VN . 2000 . , :
0 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Time, s Time, s

Fig. 3 Amplitude envelope (left), and instantaneous frequency (right), around 3000 Hz for speaker RD at low,
medium and high heart rates

In addition to a higher estimation of FO at high heart rate, the spectrum of AE also shows fewer, but
blended peaks indicating a multipulse glottal excitation with at a single dominant rate. Thus high heart rates may be

characterized by merged spectral peaks at higher than nominal frequencies in AE.

An attempt was made to model the amplitude envelope as arising from a secondary linear system. In this
model the amplitude envelope was assumed to be the output of a linear prediction (LP) system, analogous to the
vocal tract model. Since AE, the output of the system, is quasiperiodic arising from the demodulation of a voiced

segment of speech, the LP spectrum may represent a secondary system whose characteristics vary with stress. A

2-9

high order (> 7) LP model was derived for the AE. Fig. 5 shows the LP spectra for speaker RD at three heart rates.

Each spectrum was obtained from the model

H,(Z)=l—§—j : ©)

k=]
where Hy(z) is the secondary system with output AE. As seen from Fig. 5, at low and medium heart rates, the LP
spectrum is a bandpass type with Q factor (the ratio of center frequency to 3-dB bandwidth) less than unity. At high

heart rate, the spectrum becomes narrow with Q > 1.

Analysis at a Formant: Although the previous analysis at an arbitrary frequency gives a good estimate of F0, the
original AM-FM model (1) proposed by Maragos, Quatieri, and Kaiser [5] was used to analyze nonlinearities at
each resonance. From a physical point of view, analysis at a formant describes the time-varying and nonlinear
phenomena around the resonant frequency of the vocal tract filter. Due to stress, the vocal tract characteristics may
vary leading to changes in the formants and hence the modulations around them. To assess these variations with

heart rates, demodulation feature analysis around formants was carried out.

x 108 Spectrum of AE at low heart rate - RD41
T T i \ T T T
I I i 1] t I
I 1 ! ! I I |
8 2 ------ 4 e - - - [e - - - -~ B Il — _—— - - - 4 e - - e = - == —
3 ' | | 1] ']
‘E [1 ! [| l
= O R ! R S e /- L N -]
2 . . | | : : |
I]] I }]
0 I { [1) !
2(108 S0 10gPectrum gto AEat m%ggm hear(2 %(%e - RD2;?00 350 400
2
r f T I I i I
i) 1 | I I I
3 | ! : ! : |
2 1L L N - .
()] 1 { !
2 ! ! !
0 . \ ‘ /
Qe % 10spectrutdf AE at Agh heart fatS- Ross 200 350 400
6 T I T ! T I I
g 4l Lo : ______ /N o o N
2 I
£, |
> R A N e T
0 U

0 50 100 150 200 250 300 350 400
Frequency, Hz

Fig. 4 Spectra of amplitude envelopes at different heart rates for speaker RD

It has been observed [15] that the vowel spectrum is modified at high frequencies in stressful situations.
This modification alters the formant frequencies and the energy in higher frequency bands. Because of these
changes at high frequencies with stress, demodulation characteristics for the vowel utterance at formants F3 and F4
were studied. The analysis frquencies of f, = 2300 Hz and 3500 Hz were chosen from the formants of the “neutral”

utterance at medium heart rate for speaker RD.

LP spectrum of AE at low heart rate - RD41

Magnitude

Magnitude

Magnitude

Frequency, Hz

Fig. S Normalized linear prediction spectra of amplitude envelopes at different heart rates for speaker RD.

Analysis at f, = F3 = 2300 Hz: Fig. 6 shows the AE and IF for the utterance “eye” after bandpass filtering using a
narrow band of 282 Hz at f, = 2300 Hz for the three heart rates of RD. As seen in this figure, the instantaneous
frequency variation appears to be slightly more for the utterance at high heart rate than for the other two. The mean
and standard deviation of IF do not show significant variation among the three cases. The spectrum of the AE for
each case, given in Fig. 7, shows a distinct peak at the fundamental frequency. As with the demodulation analysis at
3000 Hz, the peaks around FO are dominant (at 125 Hz and 105 Hz) with much smaller peaks at its harmonics for
the low and medium heart rates; the peak for the high heart rate case is blended (between 160 Hz and 180 Hz) with
indistinct harmonic peaks. Thus the utterance at high heart rate appears to generate closely spaced multipulse

excitation.

The LP spectra for the three cases are shown in Fig. 8. As with the case of analysis at the arbitrary
frequency of 3000 Hz, the sharp bandpass spectra have center frequencies in the neighborhood of their

2-11

corresponding FO values. Table II shows the center frequencies, bandwidths and Q factors for each heart rate. For
comparison, the fundamental frequencies given by Entropic Xwaves package and those estimated from the spectra
of AE are also given in the table. As seen from the table, the center frequencies of the bandpass LP spectra appear

to be closer to the FO values given by the Xwaves package. However, Q values of LP spectra of AE do not correlate

with heart rate.
x 104 Low (RD41)
10 : 3500
! . & 3000
-8 I] >‘.
2 5 ! 0 1 O R VR & 2500
[i g
< ! ! g 2000
w
0 A X l 1500
(2(1o 0.02, diu%?ﬁm)o.os 0.08
10 3500
o £ 3000
'g o=
2 5 g 2500
g g
< Z 2000
&
0 1500
0 0
2 ’ . : 3500
l i | & 3000
.8 | ql] -
2 1L j . AWSN AR NN W g 2500
B Wl VYU 2
< . s g 2000
i i i w
0

: , . 1500
0 0.02 0.04 0.06 0.08 0

Twme, s

Fig. 6 Amplitude envelope (left), and instantaneous frequency (right), around F3 = 2300 Hz for speaker RD

at low, medium and high heart rates. The analysis frequency is shown by the horizontal line in IF.

Table 11
Peak frequencies and bandwidth of LP spectra of AE at f, = F3 = 2300 Hz

Heart rate Center frequency, | 3-dB bandwidth, Q FO from AE FO range from
Hz Hz spectrum, Hz Xwaves, Hz
Low (RD41) 116 35 3.31 125 124 - 128
Medium (RD21) 106 23 4.61 105 106 - 110
High (RD55) 162 55 2.95 180 173 - 203

2-12

Spectrum of AE at F3
x 108 Low (RD41)

Magnitude

Magnitude

1 |
1 '
1 |
50 100 150 High%%ﬁ 5) 250 300 350 400

Magnitude

400

Frequency, Hz

Fig. 7 Spectra of amplitude envelopes at the analysis frequency of F3 = 2300 Hz for utterances at different heart
rates for speaker RD
Demodulation in the vicinity of F3 can be used to estimate the formant and its bandwidth. From the

instantaneous frequency f;, the unweighted estimates of the formant (F,) and its bandwidth (B,) are given by [14, 16]

to+T

F =f =% ,;ffi(t)dt (10)
[B,)=(f,-F,) an

Using the first and second weighted moments with mean squared value of the AE as weight, the weighted

estimates of the formant (F,,) and its bandwidth (B,,) are given by [14, 16]

— (3] Tnoora
F, = fLa(_tl] = i) (12)
[a()T msq(a)

Bandwidth can be split into contributions from FM and AM. Bandwidth due to variations in IF is given by

2-13

LP spectrum of AEat F3
Low (RD41)

1 1 [] 1

i i | | |

1 1 | t)

1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Frequency, Hz

Fig. 8 LP spectra of AE at different heart rates for speaker RD at F3 = 2300 Hz.

[f, - F, [a@®)) (%) j[f ~F,Vla()) dt

[B,,]" = (13)
d [a()) msq(a)
while the AM contribution to bandwidth is given by
1 %]T
- — |[a')] at
— T
L la@P _ 17, "

B. 1= MR
[B..] 4r? [a()]? 47> msq(a)

where a(t) is the amplitude envelope of the bandpass filtered signal s(¢) = a(f)cos ®(f), and

to+T

msq(@) =[a@F = [ladr 1s)

The total weighted bandwidth is then obtained from

2-14

[8,] =B, [+[B..J (16)

Since stress contributes to changes in the formants and their bandwidths, analysis at F3 also included the
unweighted and weighted formants and bandwidths. These values are shown in Table III. The weighted and
unweighted formants and the bandwidths appear to show a decrease in values with increased heart rate. These
changes are consistent with changes in vocal tract resonant frequencies due to stress observed by Ruiz and Legros
[15], i.e., stress may increase or decrease the resonant frequencies and their bandwidths. The bandwidth due to

amplitude modulation, though small, shows a slight increase with heart rate.

Table ITI
Unweighted and weighted formants and bandwidths at demodulation analysis frequency
of F3=2300 Hz

Heart rate F,, Hz B, Hz Fy, Hz Bys, Hz Bua, Hz By, Hz
Low (RD41) 2346 96 2319 42 0.003 42
Medium (RD21) 2276 109 2269 43 0.0038 43
High (RDS55) 2350 106 2337 40 0.0039 40

Analysis at f, = F4 = 3500 Hz: At the higher formant of F4, the spectra of AE for the three heart rates show peaks
at their corresponding values of FO (Table [V), as with the analyses at F3 and at 3000 Hz. As seen in Fig. 9, the AE
varies at the fundamental frequency FO and the IF shows large variations about the analysis frequency F4, both
similar to variations at f, = F3 = 2300 Hz shown in Fig. 6. The center frequencies and the 3-dB bandwidths of the
LP spectra of AE also show similar, uncorrelated variation with heart rates. While the unweighted formants (Table
V) appear to be unrelated, the unweighted formant bandwidths are seen to decrease with increasing heart rates.
Similarly, the weighted formants show an increase with increasing heart rates. Similar results were obtained for
analysis at the arbitrary frequency of 3000 Hz.
Table IV
Peak frequencies and bandwidth of LP spectra of AE at f; = F4 = 3500 Hz

Heart rate Center frequency, 3-dB Q FO from AE FO range from
Hz bandwidth, spectrum, Hz Xwaves, Hz
Hz
Low (RD41) 123 50 2.46 121 124 - 128
Medium (RD21) 129 85 1.52 106 106-110
High (RDSS5) 173 40 433 175 173 -203

Table V

Unweighted and weighted formants and bandwidths at demodulation analysis frequency
of F3=3500 Hz

Heart rate F,, Hz B,, Hz F,, Hz B.r, Hz B.., Hz B., Hz
Low (RD41) 3519 142 3479 23 0.0053 23
Medium (RD21) 3507 83 3509 45 0.0049 45
High (RD55) 3555 76 3536 39 0.0043 39
x 10 Low (RD41) Low (RD41)
5000
¥
§- 4000
g
g 3000
u
' . | 4500
8 £. 4000
3 oy
= c
]
g ;,’ 3500
[T
3000
0
. 4500
8 : : E 4000 - - 4o R R
g 5 R d g A‘\—f’.—: _____ g l\ : i :
g AYATRTAYAL S 3500 N\ J\JLA/« A]
< PRI A N T
' | w 1) '
0 L L] 3000 I : L
0 0.02 0.04 0.06 0.08 0 0.02 0.04 0.06 0.08
Time, s Time, s

Fig. 9 Amplitude envelope (a), and instantaneous frequency (b), around F3 = 3500 Hz for speaker RD at low,

medium and high heart rates. The analysis frequency is shown by the horizontal line in IF.

Tracking of formants and bandwidths in each frame: Instead of analyzing the entire utterance “eye” as a single
frame containing about eight pitch intervals, demodulation parameters were tracked by segmenting the utterance into
frames of approximately pitch duration. This tracking provides variation of FO and formant estimates and other
features with time. Using frame lengths of 15 ms, utterance at each of the three heart rates was analyzed every 5 ms.
Variation of FO estimates from the AE spectral peaks at f. = F3 = 2300 Hz for each heart rate is shown in Fig. 10. In

this figure, the utterance at high heart rate is clearly distinguishable from those at low and medium rates. As for the

2-16

lower values of FO at medium heart rate compared to those at low, it appears that a deviation in heart rate — up or
down — from “neutral” contributes to an increase in FO. Profiles of peak frequencies in the LP spectra of AE, given
in Fig. 11, also show almost identical variations with time as the FO estimate profile in Fig. 10. The unweighted and
weighted formants shown in Fig. 12, indicate higher variations about the analysis frequency of 2300 Hz for
utterances at heart rate below and above the “neutral” rate. This agrees with the higher range of formant (F3) values
at low and high heart rates given in Table I. Thus the estimate of F3 by demodulation around “neutral” F3 is able to
track the time variation. The trajectory of F3 estimate, however, is unable to differentiate between lower and higher
heart rates relative to medium rate.

Spectral peaks of AE at F3
220

1 T i i = Low (RD41)
) \ | : —e Medium (RD21)
' ! ! ! —+ High (RD5S5)
200 - - _ e m e Fommmoo PN~ ——————= - _
1 I i
I | I 1
3 | 1 1
| 1 1 i
180.______.I _______ :__ O DU S -
1 b
1 !
|]
| t
2 160p- - bommos oo P N .
g | I I i
@ | t 1 1
g. | 1 | l | 1
@ 140 _ 4o S 57 (N U SO S e e = —
w i I
1 |
i e |
1200 o o N N _ . _
!
100 - -t f-- STt . ettt Sl =ty i .
| | | I | |
|] | |] I
| t | i i |
| i | H 1 |
80 |) ! 1 i |
0] 2 4 6 8 10 12 14

Frame Index

Fig. 10 Tracking of FO estimate from AE spectral peaks with frames at f. = F3 = 2300 Hz.

Analysis around f, = nominal F4 = 3500 Hz shows higher F0 estimates and higher frequencies in the LP
spectrum of AE for high heart rate as seen in Fig. 13. The unweighted formant profiles shown in Fig. 14, however,
indicate generally higher F4 values at high heart rate while the low and medium rates are indistinguishable. This is
in contrast to the Xwave formants (Table I) which show increasing range of F4 with increasing heart rate. The

weighted formant, on the other hand, appears to correlate somewhat linearly with heart rate.

The tracking analyses at F3 and F4, in general, show that the mean and median values of F0 estimates over
all the frames — based on AE spectral peaks and LP spectral peaks of AE - are higher at low and high heart rates than

those at neutral heart rate.

2-17

LP spectral peaks of AE at F3

I 1 I
— ' I i 1 |
-] | i i |
”M&] ! i | 1
ml\ ' ! ' | 1
' |] ! 1
mm !]] |)
S S R T H L SO ¥ S S
2T L
32F
IIIIII L
1
l
]
]
'
'
i
|||||||||||||||||||||||| ==
| 1
] 1
' |
| 1
| i
']
L~) =
i ! ! '
|] !)]
!] i] I]
|]) I I 1
|] 1] ! 1
)) !] 1 '
1 1 1 1 1 1
o o Q [} o o o (=]
N o (e} © < N o ©
N N - -— - - -

ZH ‘Asuanbalg

14

Frame Index

F3 =2300 Hz.

Fig. 11 Tracking of LP spectral peaks of AE with frames at f.

2-18

Frequency, Hz

Frequency, Hz

2450

2400

2350

2300

2250

2200

2400

2350

2300

2250

2200

Formant tracking at F3
Unw eighted
i = Tow (RD41) |
L —e— Medium (RD21) _
—— High (RDS5S)
2 4 6 8 10 12° 14
Weighted
L -5 Low (RD41)
—+— High (RDS5)
0 2 4 6 8 10 12 14
Frame Index

Fig. 12 Unweighted and weighted formant trajectory at f. = F3 = 2300 Hz

2-19

Spectral peaks of AE at F4

200 + ‘ T T T T
150 ' : J
¥
>
2 100} -
[
3
&
ic S50 -5 Low (RD41)
—e— Medium (RD21)
0) ’ . . |+ High (RD55)
0 2 4 6 8 10 12 14
LP spectral peaks of AE at F4
250 ¥ T T T T T T
-3 Low (RD41)
—o— Medium (RD21)
2001 —— High (RDS5)
¥ - A
>
2 150] .
Q
=3 >
o
o
[
50 ! 1 1 1 1 L 1 it
1 2 3 4 5 6 7 8 9 10 11

Frame Index

Fig. 13 Tracking of peaks of AE spectrum and AE LP spectrum with frames at f, = F4 = 3500 Hz

2-20

Formant tracking at F4

Unw eighted
3600 H 4 T T t T
' - Low (RD41)
—o— Medium (RD21)
High (RD55)
3 3550 _ — .
- L
Q
o
) Q
g 3500
Y.
34501

-+ Low (RD41)
e Medium (RD21)
4 High (RDS5)

Frequency, Hz
[#)
[52]
3

1)

1 2 3 4 5 6 7 8 9 10 1
Frame Index

b4
3

Fig. 14 Tracking of unweighted and weighted formants with frames at f; = F4 = 3500 Hz

Analysis at lower frequencies: Performance of the energy separation algorithm is poor at low frequencies.
Moreover, Morlet wavelet bandpass filter requires a large size for reasonable sharpness in the passband. Hence,

demodulation below F3 was not carried out.

2-21

V. Feature Analysis of Speech from an Operational Aviation Emergency

The NATO database SUSC-0 was used to study the AM-FM characteristics of speech in an emergency.
This database consists of approximately 10 minutes of interchange between an F-16 pilot, his wingman, and the
tower in an in-flight emergency. During the course of flight, the pilot notices the hydraulic oil pressure dropping,
realizes the loss of his engine, declares ‘mayday’ emergency, and, with the help of his wingman and the tower, lands
the aircraft safely. Although the pilot’s voice during the course of emergency was remarkably calm, one can assess

the stress in this life-threatening situation,

For analysis, the utterance /is/ by the pilot was extracted from his speech during (a) his checking of the
instrument panel, (b) his noticing of oil pressure being low, (c) his declaration of emergency, (d) his declaration of
‘mayday’, and (e) his urgent request for help in landing. The context for the utterance /is/ with its approximate time
marking in the database is shown in Table VI for each of the five cases to indicate the level of stress. The above
utterance segments were concatenated for analysis to track the modulation parameters as the stress level varied from
neutral (vi3-is-25), to high (vi3-is-415 and vi3-is-440) and back to medium or low level (vi3-is-450). Fig. 15 shows

the collection of all five utterances.

Table VI

Utterance context for pilot viper3

No. File name Utterance context Approximate time marker Number of
in the database samples
1 vi3-is-25 oil pressure is about .. 25s 7781
2 vi3-is-249 ... know what an sfo is ... 249 s 3322
3 vi3-is-415 ... emergency zero four is ... 415s 1780
4 vi3-is-440 ... it is ... lost my engine ... mayday 440 s 3327
mayday mayday
5 vi3-is-450 ... is an emergency I'm engine out 450 2125

Modulation analysis was carried out at the center frequency of 3300 Hz, which is close to the third formant
F3. Since utterances at different stress levels were combined together, modulation features were tracked every 5 ms
using 15 ms frames. The unweighted and weighted formant trajectories are shown in Fig. 15. These smoothed F3
profiles show that as stress increases formant F3 also increases. Similar increases were also observed in the profiles
of median and mean-squared values of the instantaneous frequencies with frames. The amplitude envelope
variations with frames, on the other hand, did not show similar correspondence with stress. Fig. 16 gives the profile

of the peak frequencies in the spectra of the amplitude envelopes, which are the estimates of FO, with frames. This

2-22

profile shows large variations in FO at high and medium stress levels relative to FO corresponding to neutral

utterance.

Analysis at 1400 Hz, which is in the vicinity of F2, showed similar profiles of formants and FO estimates.

2 x 10* Speech
Vi3-is-25 vi3-is-249 vid-is-440 vi3-is-450

3
LR, |
g
<
2 I3 1 1 1 L v'e..s-l415 L 1 1
0 0.2 04 0.6 0.8 1 1.2 1.4 16 | 1.8 2
3400] Lllnw eighted forna?t Sa[rrple index 4
¥
-5 3350 - i
Q
et VAN
B \/v \V/
3250 L
0 50 1cmeighted foman1ts° 200 250
3400 : , , ,
¥
§ 3350 //\ i
=4
£ \/ N \//V\\/
3250 L
0 50 100 150 200 250
Frame index

Fig. 15 Concatenated speech (top), unweighted formant (middle) and weighted formant profiles ifor speaker vi3 at
analysis frequency 3300 Hz. (The formant profiles are smoothed.) Vertical lines in the speech graph separate

utterances at different stress levels.

2-23

X 104 Speech

vid-is-25 vi3-is-249 Vi3-is-440 vi3-is-450
. i
©
£)
g Vo L 7
<
vid-is-415
-2 1 1 Il L ! L 1 1 1
0 0.2 04 0.6 0.8 1 12 1.4 1.6 1.8 2
Sanple index X 10*
Smoothed FO estimates)
100 T T T 1
80 .

Frequency, Hz
3

20 A 1 1 1
0 50 100 150 200 250

Frame index

Fig. 16 Speech signal and smoothed FO estimates at analysis frequency 3300 Hz

VI. Discussion

Two sets of utterances, one spoken at three different heart rates and the other at different levels of stress in
an emergency, have been analyzed using the AM-FM model. Results of these analyses show that the modulation
based parameters provide stress related information comparable to that from the direct analysis of speech for vocal
tract and other parameters. The fundamental frequency of voicing, long observed as related to stress, is clearly
brought out by the spectrum of the amplitude envelope in the modulation model. Since speech signal amplitude is

generally observed to have a large value at the onset of excitation and decay before the next excitation, the
amplitude envelope may be modeled as a, () = e™°* A, (). The exponential decaying factor in this model may

provide additional information related to stress. The decaying amplitude model clearly requires pitch synchronous

analysis and tracking. Since the AM-FM model provides an estimate of FO at any arbitrary analysis frequency, it

facilitates pitch synchronous analysis.

Instantaneous frequency from the AM-FM model is able to lock in with the nearest formant when the

analysis is carried out in the vicinity of an estimated formant. Since speech signal energy at high frequencies is

2-24

observed to increase with stress, estimation of higher formants and their bandwidths is a useful tool for stressed

speech analysis.

VII. Conclusion

Analyses of two sets of utterances showed that the AM-FM model brought out stress related variations of
FO0 and formants. Modeling of the amplitude envelope as arising from a secondary linear system activated by stress
did not correlate with stress; this modeling, however, resulted in another estimate of FO. Additionally, the
modulation model showed that stress related FO can be estimated by demodulation around any arbitrary frequency
without first finding a formant. In general, the modulation model indicated higher values of FO whenever the
speaker’s heart rate was different from the neutral rate; also, the formant values from the model showed an increase
with actual stress. Both of these results are consistent with FO and formant variations observed by direct analysis of
speech under stress. More data sets of speech under actual stress need to be analyzed for better correlation of FO and

formants with stress.

References

1. Teager, HM., and S. Teager, “Evidence for Nonlinear Production Mechanisms in the Vocal Tract,” NATO
Advanced Study Inst. On Speech Production and Speech Modeling, Bonas, France, 1989, Kluwer Acad. Pub.,
1990.

2. H.M. Teager, “Some Observations on Oral Air Flow during Phonation,” IEEE Trans. Acoust., Speech, Signal
Processing, Vol. ASSP-28, No. 5, pp 599-601, Oct. 1980.

3. T.F. Quatieri, T.E. Hanna and G.C. O’Leary, “AM-FM Separation using Auditory-Motivated Filters,” IEEE
Trans. Speech and Audio Proc., Vol. 5, No. 5, pp. 465-480, Sep. 1997.

4. A.B.Fineberg, R.J. Mammone and J.L. Flanagan, “Application of the Modulation Model to Speech
Recognition,” Proc. ICASSP '92, pp. I-541-1-544, 1992.

5. P.Maragos, T.F. Quatieri, and J.F. Kaiser, “Speech Nonlinearities, Modulations, and Energy Operators,” Proc.
ICASSP '91, pp. 421-424, 1991.

6. C.E. Williams, and K.N. Stevens, “Vocal Correlates of Emotional Stress,” in Speech Evaluation Psychiatry, J.K
Darby, Jr. (Ed.), Grune & Stratton, Inc.,1981.

7. P.Maragos, J.F. Kaiser and T.F. Quatieri, “On Amplitude and Frequency Demodulations using Energy
Operators,” IEEE Trans. Signal Processing, Vol. 41, No. 4, pp. 1532-1550, Apr. 1993.

8. J.F.Kaiser, “On a Simple Algorithm to Calculate the ‘Energy’ of a Signal, Proc. ICASSP '90, pp. 381-384,
1990.

9. K. Gopalan, “Amplitude and Frequency Modulation Characteristics of Stressed Speech,” Final Report, AFOSR
Summer Faculty Research Program, Bolling AFB, July 1998.

2-25

10.

11.

12.

13.

14.

15.

16.

Lieberman, P. and S.B. Michaels, “Some Aspects of Fundamental Frequency and Envelope Amplitude as
related to the Emotional Content of Speech,” Acoust. Soc. Am. Vol. 34, No. 7, 1962, pp. 922-927.

E. Absil, et al., “Time-related Variabilities in Stressed Speech under Laboratory and Real Conditions,”
Technical Proceedings, qukshop on Speech under Stress Conditions, NATO Defence Research Group, Sep.
1996, pp. 23-1 - 23-4.

P. Benson, “Analysis of the Acoustic Correlates of Stress from an Operational Aviation Emergency,” ibid, pp.
25-1-25-4.

A. Protopapas, and P. Lieberman, “Effects of Vocal FO Manipulations on Perceived Emotional Stress,” ibid, pp.
4-1-4-4, |

A. Potamianos, “Speech Processing Applications using an AM-FM Modulation Model,” Ph.D. Dissertation,
Harvard University, 1995.

R. Ruiz and C. Legros, “Vowel Spectral Characteristics to Detect Vocal Stress,” Proc. 15th Int. Congress on
Acoustics, Trondheim, Norway, pp. 141-144, June 1995.

L. Cohen and C. Lee, “Instantaneous bandwidth,” in Time-Frequency Signal Analysis — Methods and
Applications (B. Boashash, Ed.), London: Longman-Chesire, 1992.

2-26

A STUDY ON ACCELERATING THE RAY/BEZIER-PATCH
INTERSECTION COMPUTATION IN XPATCH -

Donald L. Hung

School of Electrical Engineering and Computer Science

Washington State University, Richland
2710 University Drive
Richland, Washington 99352

Final Report for:

Summer Research Extension Program
Information Directorate (IFSD)
Wright Research Site
Dayton, Ohio

Sponsored by:
Air Force Office of Scientific Research
Bolling Air Force Base, DC

and

Wright Research Site
Dayton, Ohio

December 1999

3-1

A STUDY ON ACCELERATING THE RAY/BEZIER-PATCH
INTERSECTION COMPUTATION IN XPATCH

Donald L. Hung
School of Electrical Engineering and Computer Science
Washington State University, Richland

Abstract

Xpatch is a software program which uses the ray-tracing technique to model the incident radar signal and generate
radar cross sections of various objects. Surfaces of the objects are modeled by shape primitives such as boxes,
triangular facets and bicubic Bézier patches. The major computation associated with the ray-tracing technique is to
determine whether a given ray intersects with the shape primitives. In general, ray-tracing algorithms (with respect
to different shape primitives) are computationally intensive, which is particularly true for ray/Bézier-patch
intersection algorithms owing to their higher degree of complexity. In this study, we focus on accclerating the
ray/Bézier-patch intersection computation because for object modeling, Bézier patches allow much higher accuracy
comparing with other shapc primitives. As the outcomes of the study, a new algorithm suitable for physical
implementation has been developed; its corresponding architecture for physical realization has also been proposed.
In addition, performance estimation has been obtained based on implementation models relying on digital signal

processors (DSPs). This information can be used as references for future works on practical implementation.

3-2

A STUDY ON ACCELERATING THE RAY/BEZIER-PATCH
INTERSECTION COMPUTATION IN XPATCH

Donald L. Hung

1. Introduction

Ray tracing is one of the most important rendering techniques in the field of computer graphics for producing high-
quality and photorealistic pictures. When rendering a scene, at least one ray is cast backward for each pixel of the
picture. Each cast ray needs to be determined whether it intersects the given scene. If it hits the object, it may
produce other rays, such as reflection ray and transparent ray. The ray tracing repeats this fashion so on and so forth
until each pixel gets its color value. In order to avoid aliasing effects, sometimes it is necessary to cast multiple rays
for each pixel. Therefore the ray-tracing technique deals with hundreds of and thousands of ray-object-intersections

and is well know for its exorbitant computation.

Xpatch is a software program that uses the ray-tracing technique to model the incident radar signal and generate
radar cross-section predictions of various objects. The object surfaces are modeled by different shape primitives
such as boxes, triangular facets, bicubic Bézier patches, etc.. Corresponding to each type of the shape primitives, a
certain ray-tracing algorithm is executed in order to determine if a given ray intersects with the interested shape
primitives. A significant amount of work has been conducted at the Air Force Research Lab (AFRL) to determine
which part of the Xpatch program is the most time consuming. The finding is, the majority of the time (between

50% and 80%) is spent in executing the ray-tracing algorithms.

Among the commonly used shape primitives for ray tracing, Bézier patches stand out for being able to provide high
modeling accuracy. On the other hand, computational expenses for ray/Bézier-patch intersection algorithms are
especially high due to the nature and complexity of the algorithms. To tackle the dilemma, many attempts have been
made in the past to develop efficient ray/Bézier-patch intersection algorithms. Recently proposed algorithms include
Bézier clipping [NSK90], Chebyshev Boxing [FB94] and Bounding Volume Hierarchy [CSS97]. The Bézier
clipping algorithm [NSK90] introduces an iterative geometric algorithm that finds all solutions of the ray-patch
intersection problem up to an user definable accuracy, but it is hard to determine the iterative steps needed for a
given patch. The Chebyshev Boxing algorithm [FB94] replaces an original patch by many bilinear approximating
patches, which will be subdivided into pieces repeatedly until the original patch has been well approximated. The
preprocessing procedure required by this algorithm uses a recursive method to subdivide a given patch. The
bounding volume Hierarchy {CSS97] combines the previous two by first carrying out the preprocessing procedure in
the Chebyshev Boxing algorithm and then calculating the tight bounding volumes. All these algorithms are based on

recursive methods and therefore not suitable for hardware acceleration.

To speed up the ray tracing computation, significant efforts have also been made on the hardware side. The

following works were reported in a survey conducted by Arvo and Kirk in 1989 [AK89]: LINKS-1, a 64-node (Intel

3-3

8086/8087) multicomputer that can be configured as a set of parallel pipelines to render a sequence of images;
Kobayashi’s work by distributing the world database among a set of intersection processors; and Goldsmith’s work
on a general-purpose multicomputers system for ray-tracing on a hypercube. More recent works include Kadi
Bouatouch’s exploitation [BB94] on using cache and virtual memory techniques that yielded a speedup of about 60
on a 64-node MIMD by reducing the complex message passing; Hyun-Joon Kin and Chong-Min Kyung’s ring-
structured multi-processors [KK96] which would allow a linear speedup (proportional to the number of processors
used) by spreading the objects among the processors. Al the aforementioned hardware solutions are based on

general-purpose architectures that are suitable for executing any kind of ray-object-intersection problems.

From the author’s earlier research conducted at AFRL in Summer 1998, a ray/triangular-facet intersection algorithm
optimized for hardware realization was developed and the corresponding hardware architecture was also proposed
[Hung98]. As an extension of the author’s previous work, the focus of this study is on accelerating the ray/Bézier-
patch intersection computation in Xpatch. Again, efforts have been made on two aspects: 1) developing an algorithm
that is suitable for hardware/softwarc acceleration; 2) define the algorithm-specific system architecture for physical
implementation in the future. As the results of this study, a new algorithm has been developed which is based on a
set of sub-tasks including patch subdivision, hull classification, patch center calculation, ray/patch distance
calculation, and sorting to find the four intersection points that are ncarest to the ray origin. Based on the algorithm,
a pipelined system architecture has been proposed. The number of coarse-grained pipeline stages was verified by
extensive simulation. For performance estimation, the pipeline was refined, load-balanced and mapped into multiple
TMS320C6701 digital signal processors (DSPs) and custom designed hardware for the sorting task. The results
show that by reducing the grain scale of the pipeline and supporting the inherent parallelism of the computing tasks
within the pipeline stages, an overall system throughput of over 1 million ray/patch intersections per second is

achievable.

The rest of the report is organized as follows: Section 2 introduces the background and the computation involved
with the proposed Ray/Bézier-Patch intersection algorithm, as well as the verification of the algorithm; Section 3
describes the functional blocks required for executing the algorithm, and proposes the overall system architecture
without explicit specifications on software/hardware boundaries; Section 4 describes the performance estimation
based on implementation models relying on off-the-shelf DSPs and limited ASIC for an identified computational

bottleneck; Scction 5 concludes the report.

3-4

2. Algorithm and Computation for Ray/Bézier-Patch Intersection

2.1 Background of the Proposed Algorithm

The scene of a ray intersects with a Bézier patch in a 3D space is illustrated by Fig. 2-1. Theoretically, there are 18
possible intersection points when a ray piercing a bicubic patch [KAJ82]. From a practical standpoint, our interest
here is to find the four intersection points that are nearest to the ray origin. Also, our study has been focused on
bicubic Bézier patch, which is frequently referred to as ‘patch’ or ‘Bézier patch’ in this report for the sake of

simplicity.

0]

— o,

Figure 2-1 Ray/Bézier-Patch intersection Figure 2-2 Convex hull of bicubic Bézier patch

One of the major difficulties associated with the ray/patch intersection problem is that there are no exact solutions to
the problem. As the consequence, we have to look for approximated solutions. A parametric bicubic Bézier patch is
characterized by 16 control points that are connected as a mesh as shown in Fig. 2-2. The property of convex hull
states that the Bézier patch must lie inside its convex hull - the polyhedron formed by connecting the patch’s control
points [WW98]. With this property, one can conclude that, as the necessary (but not sufficient) condition for a ray to
intersect with a given patch, the ray must hit the patch’s convex hull first. Note that, the ray may still miss the patch
even it hits the convex hull, as the ray may pass through the clearance between the hull boundary and the patch
surface. The probability of this phenomenon, however, will become lower and lower as the size of the patch gets
smaller and smaller. When a ray hits the convex hull of a sufficiently small patch, the center of the patch can be
considered as a good approximation of the ray/patch intersection point.

To determine whether or not the ray hits the convex hull of a given patch, we took an approach based on the concept
of virtual projection which is illustrated by Fig. 2-3 through 2-6. Imagine that a ray is determined by the intersection
line of two planes U and V who are perpendicular to each other, and that a projection plane perpendicular to the ray
direction is placed in front of the ray and a testing patch. We then project the two planes U and V together with the
ray and the testing patch onto the projection plane. What we will see on that plane is 2D coordinate system with 16
points scattered inside. The two axes of the coordinate system are projected from the two planes U and V; the origin
of the coordinate system is projected from of the ray, and the 16 points are projected from the control points of the

patch. The figures also show that, in the projected 2D coordinator system, if the 16 projected control points are

3-5

located on the same side of either one of the two axes, the ray must have missed the convex hull of the testing patch

(refer to Fig. 2-4 and Fig. 2-5); otherwise the ray hits the convex hull (refer to Fig. 2-6).

Figure 2-5. Case 2: The ray misses the patch Figure 2-6. Case 3: The ray hits the convex hull of the
patch

Based on the above discussion, we outline the idea behind the ray/Bézier-patch intersection algorithm developed in
this study:
» Divide an input patch into 16 sub-patches, each is characterized by 16 control points,
» Find all sub-patches that are possibly intersected by the ray, based on the property of convex hull and the
concept of virtual projection,
e From all sub-patches obtained from the last step, find four sub-patches that are most close to the origin of
the ray,
* Subdivide the four sub-patches again to obtain 16 smaller patches, and repeat the previous steps until the
approximated solutions (the centers of four tiny sub-patches) satisfy the desired resolution.
Mathematical notations and detailed computations involved in our algorithm are discussed in the following

subsections.

2.2 Mathematical Notations

Mathematical notations used in this rcport, for point, ray, planc and Bézier patch in a 3D space, are listed below:

A point:

3-6

P=(x,y 2)

A ray:
R=0+D*t (M
where the origin (O) and direction (D) of the ray are defined by (O,, Oy, 0,)and (D,, D),, D,) respectively.
A plane:
A*¥x +B*y+C*z+ D=0 (2)
where (A, B, C) is the normal of the plane.
A general nonrational Bézier patch:
n o om
Qu,v)=Y Y P, B, wB,,0w,; for 0<uy<l 3)

i=0 j=0
where P;;=(x; ;, y;;, z;;)are the Bézier patch’s control points with associate weights w; ; =1 in this study, and the

blending functions are the Bernstein polynomials as shown below:

my . s ny . s n n! n n!
B, (w=| W aq-w)"’, B,W=|.pa-v", = e | ——
im0 (1] —) U = (1) Jjin=j! (1) iNn—i)!
A Bézier patch can be also presented in its matrix format. That is,
Qu,v)=[UI[M](PI[M]' V 4)
where,
m m-1 n n-1 4 L. . .
[Ul= [u u 1], [V]= [v v 1] , [P] is the control point matrix. [M] is the Bézier basis matrix,
and [M}' is the transpose of [M].

The bicubic Bézier patch is a special case of (4) with n = m = 3. That s,

3

1%
2
Quw=[* «* u mypymy|” ®)
v
1
where
-1 3 -3 1 Poo Por Pz Po
3-6 30 Pro Pu Pr Pi3
(M]= , P= 6)
-3 3 0 0 Pxo Pan Pn Pxn
1 0 0 0 P Pn Pn Pxn

2.3 Computation for Generating the Two Planes that Determine a Given Ray

From the discussion in Section 2.1, given aray R=0+D*¢, our ray/Bézier-patch intersection algorithm needs to
find the two planes U and V that determine the ray. That is, to find
A, *x+B *y+C *z+D =0 (7.a)

3-7

and A, *x +B,*y+C *7z+D_ =0
v v

(7.b)

from the parameters of the given ray. Let the two planes U and V to be perpendicular to each other as illustrated in

Fig. 2-7 (where Nu and Nv are normals of the planes U and V respectively, and D is the direction of the ray), we

have:

W
» Nu
<Y D Nv

Figure 2-7 Plane Generation

(A4, B, C,)=(0, 0, 0,)x(D, D, D,)
(Av Bv CV)E(AU Bu Cu)x(Dx D‘v Dz)
Du E"(Au Bu Cu) i (Ox Oy Oz)

D,=-(A, B, C,)* (0, O, 0,)

(8.a)
(8.b)
(8.c)
(8.d)

The above computation can be simplified. When one of the components of the ray direction vector D is zero (in this

case we let D, to be zero), parameters of the planes U and V can be determined by:
Nu=(0 0)xD= Ox- Dzj'+D),2 =0 -D, D,)
Nv=(l 0 0)
Du=-NueO=D_-0,-D, 0,

Dv=-NveO=-0,

If none of the components of D is zero, then parameters of the two planes can be determined by:

Nu=(0 0 1)xD=(-D, D, 0)
Nv=NuxD=(D,D, DD, -D!-D?)
Du=-NueO=D,0,-D,0O,

Dv=-NveO=—(Nv..-O, +Nv..-O +Nv. . -O)

(9.a)
(9.b)
(CX9)
9.d)

(10.a)

(10.b)

(10.¢)
(10.d)

Note that in the above formula, Nu and Nv are orthogonal to the ray direction. and at the same time Nu and Nv are

orthogonal to each other. The overall computation required for generating the two planes U and V are summarized

in the algorithm below.

Plane Generation Algorithm:

Step I: If D, #0 goto step2, else

3-8

Nu=(0 -D, D,); Nv=(0 0); Du=D,-0,~D,-0,;Dv=-0,;return
Step 2:if D, # 0 goto step 3, else

Nu=(D, 0 -D,); Nv=(1 0); Du=D,-0,-D,-0O,;Dv=-0,;return
Step3:if D, # 0 gotostep 4, else

Nu=(—D), D, 0); Nu=0 0 1); DuszOX—DXOy; Dy =-0,;return
Step4: Nu=(0 0 1)xD=(-D, D, 0);Nv=NuxD=(D,D, D,D, -D}-D}};

Du=-NueO=D,0,-D,0,;Dv=-NveQ=—(Nv.,-O, +Nv.,-O, +Nv.,-0,); return

X y;

2.4 Computation for Patch Subdivision

It was discussed in Section 2.1 that, in order to obtain approximated solutions for the ray/patch intersection problem,
we have to divide an input patch in to smaller sub-patches. The patch subdivision computation described here is
based on the de Casteljau algorithm [FOL97] which has the advantage that, while a patch is being divided, control
points of all the sub-patches are generated directly. The computation takes two steps to divide a given patch into

four sub-patches. In the first step, we fix the variable v in Equation (5) and apply the left and right Bézier division
matrices D5 and Df to the given Bézier patch [P] to obtain the left and right Bézier sub-patches Py and Py
respectively. That is,
Py =Dy [P] (1
and Pf =DEp] (12)
In the second step, we fix the variable u in Equation (5) and apply the same method to the sub-patches P,f‘ and P,f
obtained in the previous step, to obtain the four sub-patches PBLL ,PBLR,P,fL ,and PBRR (also denoted as P00,
PO1,P10, and P11) respectively. Thatis,

Pt =D} Py, PF"= DF PE, PF-= DL PF and PF*= DY PF. (13)

The given Bézier patch [P}, the left and right Bézier division matrices Dé and Dg are defined by

p00 p01p02 p03 8000 1331
10p11p12 p13 4400 0242
py=|POPUPIER e L .and DE=1 (14)
p20p21p22 p23 gl2420 810044
p30p31p32 p33 1331 0008

respectively.

2.5 Computation for Determining If a Given Ray Hits the Convex Hull of a Given Patch — the Hull Classification

In Section 2.1 we introduced the idea of virtual projection, and showed how to determine whether a given ray hits the

convex hull of a given patch by looking at the allocation of the projected patch control points in the projected 2D

3-9

coordinate system. Note that, the problem of determining the position of a projected control point in the projected
2D coordinate system (specifically, on which side of the axes the point is located) is equivalent to the problem of
determining the relative position of an original control point with respect to the original planes (U and V) in the 3D
space (specifically, on which side of the planes the point is located). The actual computation thus can be carried out
in the 3D space as this will be more efficient.

Recall that in a 3D space, the distance of a point P at (x, y,) to a given plane A* x+B* y+C * z+D=0 is given by
_Ax+By+Cz+D
Ja?+ B2 +C?

This distance is either negative or positive depending on at which side of the plane the point P is located (the

d (15)

distance is zero if P is on the plane). Since we are only intcrested in the sign of d, which is solely determined by the

numerator of the right-hand side of the Equation (15), we can define the sign distance as shown below:

d'=Ax+By+Cz+ D, (16)

and in matrix form,

d=[A B C D{l:]z[A B C D (17)

x
y
z
1
Once the planes U and V are obtained, we can determine the patch’s position by evaluating the sign distances
between the control points and the planes. To be specific, for either plane U or V, if signs of the sixteen sign
distances are either all positive or all negative, the ray misses the patch. If this is untrue for both planes, the ray hits
the convex hull of the patch and hence it may also intersect with the patch itself. Note that evaluation processes
against the planes U and V can be done in parallel.

The explicit computation for calculating the 16 sign distances with respect to the planes U and V are:

Poo, Por, " Py Py
[duO dul - duld dulS|=[Au Bu Cu Du Pooy Pory 7 Py Pay (18)
Poo, Poi, ° P32, P33,
1 1 1 1 1
and
Poo, Pory ° Pz, Pz,
[0 dvi - dvia dvis|=[Av Bv Cv py)| POy Pore T Py Py (19)
Poo, Pol, Py, P,
1] 1 1 1
respectively.
Two vectors Su:[SuO Su2 -+ Suld SulS] and Sv:[SvO Sv2 - Svl4 SvlS]arc defined to hold the

signs of the sign distances obtainced from (18) and (19), respectively. As an example,

3-10

-1 ifdu0<0
Su0 =sign(du0)={ 0 if du0=0 (20)
1 ifdu0>0
For both Su and Sv, if the sum of all elements is not equal to -16 or 16, the ray may intersect with the patch and thus

the patch needs to be further divided into smaller sub-patches for more accurate approximation.

2.6 Computation for Determining the Center of the Patch

Based on the discussion given in Section 2.1, it is necessary to find out the center of a given patch for two reasons: 1)
a ray/patch intersection point is approximated by the center of a sufficiently small patch; 2) in the process of finding
the approximated intersection points, our algorithm must sort out four sub-patches (from all sub-patches possibly hit
by the ray) that are most close to the origin of the ray, where the “closeness” is measured by the distance between the
origin of the ray and the center of a given patch.

For a given patch Q (u,v) defined in Equation (4), its center can be obtained by the following computation:
Q(1/2, 1/2)=[U][M][P][M]' v 21)
where
Wi=fe’ v w 1], v1=p® v v 1] u=v=12

for a bicubic Bézier patch.

For each component of Q, we have:

01/2,1/2), =[UM}P) [M] V] (22.2)
Q1/21/2), =[UIM]P},[M] V] (22.b)
o/ 2,1/2), =UIM}P), M} V] (22.0)

Based on the above, we can derive the formula below for efficient computation:

Q(u,v)= (1/64)*(poo + Po3 + P30 + P33)
+(3/64)*(poy + Poz + Pio * P13 + Pao + P23 + P3; + P3y) (23)
+(9/64)*(pyy + P12 + Pu + Pn)

2.7 Computation for Determining the Distance Between the Origin of the Ray and the Center of a Given Patch

Given two points Py(x,,y,,z;) and P,(x;,y,,2,) in a 3D space, the distance between them is defined by:

2
d=\(x = x2)" + 0y =) +(z = 2)° (24)
To simplify the computation, we redefine the distance as:

d=abs(x; —x,)+abs(y, - y,)+abs(z; —z,) (25)

Whether the ray runs into or runs away from the patch is determined by the angle between the ray direction D and the

vector from the ray origin O to the patch center C, as illustrated by Fig. 2-8. Specifically, if cos@ = Ig—iTg— <O the

ray runs away from the patch, otherwise the ray runs into (i.e., hits) the patch.

D

ocC

0

Figure 2-8. Ray direction D and the vector from the ray origin O to the patch center C

Again, since we are only interested in the sign of cos@, for obtaining the direction information, all we need to

calculate is OC-D and, with which we can define the signed ray/patch distance as shown below. Where d is defined

in Equation (25).

d ifOC-D>0
d, = (26)

-1 if 0OC-D<0

When OC-D < 0, d,, is force to be ‘-17 which indicates that the ray runs away from the patch.

2.8 Computation for Finding the Four Sub-Patches that Most Close to the Ray Origin — the Culler

In our patch/ray intersection algorithm, an input patch is first divided into 16 sub-patches; each sub-patch is then
evaluated to see if its convex hull intersects with the ray (refer to Section 2.1). From all sub-patches that passed the
evaluation (i.e., their convex hull were hit by the ray), four with the shortest ray/patch distance (defined in the
previous section) will be sort out for further approximation. The computation required by the sorting task is to

execute the quick sort algorithm, which was chosen because given an input array of size n, the quick sort runs faster
than other sorting algorithms with ©(rn21gn) run time. Fig. 2-9 comparcs the efficiency of the quick sort algorithm

with another two popular sorting algorithms — the heap sort and the merge sort. Clearly, the quick sort is the best

choice.

Running-time of three sorting methods Vs. length of array

15 . ' ' ' '
[5)
D .
K2} * time of HeapSort
& 10F o time of MergeSort — |
= + time of QuickSort
()]
c N —
= OM
0 2 4 6 3 10 12

n*log2(n) x 10"

Figure 2-9 Comparison of different sorting algorithms

3-12

2.9 Summary on the Ray/ Bézier-patch Intersection Algorithm

Based on the previous discussion, we now summarize the ray/Bézier-patch intersection algorithm as shown below,

and its corresponding flow chart is given in Fig. 2-10.

Algorithm for Finding Ray/ Bézier-patch Intersection:

stepl:

step2:

step3:

step4:

step5:

Subdivide the input patch into four sub-patches (see Section 2.4, Formula 11-14) and put them into level-1
list which can store at most four sub-patches; generate planes U and V from the ray parameters (see Section
2.3, Plane Generation Algorithm).

If the desired number of iteration is not yet reached, subdivide the each patch in the level-1 list into four
sub-patches (see Section 2.4, Formula 11-14) and store them into level-2 list which can store at most 16
sub-patches, otherwise go to Step 5.

Evaluate each patch in level-2 list by hull classification (see Section 2.5, Formula 18-20); calculate the
centers of the patches (see Section 2.6, Formula 23) and their distances to the origin of the ray (see Section
2.7, Formula 26).

Sort the patches in level-2 list to find the four patches closest to the ray origin (see Section 2.8) and put
them into the level-1 list; back to step2.

Output the centers of the four sub-patches (if they are close to each other enough, then combine them into

single point).

With this algorithm, assuming n iterations are repeated and there is an intersection point, the patch containing this

point will be subdivided by n times, each time into four small ones. Therefore the sub-patches obtained at the end of

the iteration will be 1/4" of the original patch size. As long as the input patch is reasonably small, the four final sub-

patches will converge to a tiny area and the center of which will be considered as the intersection point.

nput:
16 control points, ray
parameter

subdivide patch into four subpatches and store
them into levell list, U and V planes' generation|

yes

subdivide each patch in level-1 list into four
subpatches and put them into level-2 list

huli-classify the subpatches in level-2 list,
caculate thepatch-centers and patch-distances

sort and culler the first four nearest subpatches
and store them in level-1 list I

v

combine possiblepatch-centers in levei-1list

Output:
coardinates of Intersection
points

Figure 2-10 Flow chart of the algorithm

3-13

2.10 Verification of the Proposed Algorithm

In order to verify the proposed ray/Bézier-patch intersection algorithm we developed a user-friendly interface. With
which arbitrary rays and Bézier patches can be specified by the user, and the algorithm is then tested extensively in
software. Using the teapot patches as the benchmark, we also compared the results obtained from our algorithm with
those from Nishita’s algorithm [NSK90} (which is based on the Bézier clipping technique). We found that the
intersection points generated by the two algorithms are close enough with respect to the accuracy defined by the
Bézier clipping approach. The following case is picked arbitrarily as an example, where the input parameters for
patch and ray are
Patch: P =
{ <-0.6,0.0,-0.6>, <-0.6,0.8,-0.2>, <-0.6,0.8,0.2>, <-0.6,0.0,0.6>,
<-0.2,0.2,-0.6>, <-0.2,04,-0.2>, <-0.2,0.4,0.2>, <-0.2,0.2,0.6>,
<0.2,0.2,-0.6>, <0.2,04,-0.2>, <0.2,0.4,0.2>, <0.2,0.2,0.6>,
<0.6,0.0,-0.6>, <0.6,0.8,-0.2>, <0.6,0.8,0.2>, <0.6,0.0,0.6>)
ray: R = {<0.7,0.55,0.05>, <-1.0,0.0,0.0>)

respectively. With the input parameters shown above, both algorithms find two intersection points after ten iteration
stages. The difference between the solutions from the two algorithms is 10 which is the user-defined accuracy in
Nishita’s algorithm. Here the difference is defined by Max{lx-x’l,ly-y’l,Iz-z"l), where (x, ¥y,) and (x’, y’, 2°) are two

correspondent points in the two algorithms. The detailed results for the given case are shown in Table 1.

The proposed algorithm Bézier clipping Difference
(x,y,z) algorithm Max(Ix-x’l, ly-y’l, 1z-2’1)
(x7y’.z")
EPISLON=10"
0.520605468750 0.520467170854 10
0.550060024155 0.549999999993
0.050097656250 0.050000000000
-0.520605468750 0.520467170854 10
0.550060024 155 0.549999999993
0.050097656250 0.050000000000

Table 2-1 Comparison of the results from the proposed algorithm and Nishita’s algorithm

(For both algorithms, number of iterations: 10; number of intersection points obtained: 2)

3. Functional Building Blocks and the System Architecture
In this section, we definc the functional building blocks required by the ray/Bézicr-patch intersection algorithm

discusscd tn Section 2. Based on which, a pipelined system architecture is proposed. The purpose here is to specify

3-14

the functionality of each building block as well as the structure and operation of the overall system, rather than the

hardware/software boundaries and implementation details.

In order to compare the relative computing load of the subtasks required by the proposed ray/Bézier-patch

intersection algorithm, a set of C function calls are developed and listed in Table 3-1.

Names of the Function Calls Tasks of the Function Calls
PlaneGenerator to generate the two planes U and V from a given ray
PatchSubdividor to divide an input patch into four sub-patches
PatchXPlane to execute the task of hull classification in Step 3 of the algorithm
GetPatchCenter to calculate the center of a given patch
GetDistance to calculate the distance from the patch center to the ray origin
QuickSort to sort out 4 sub-patches nearest to the ray origin from 16 candidates

Table 3-1. Function calls for the ray/Bézier-patch intersection algorithm

Execution times for the function calls are obtained and plotted in Fig. 3-1. These data reveal the load distribution
among the different computing tasks and show the computational bottlenecks. They serve as guidelines for load
balancing (at the stage of defining the functional building blocks and system architecture) and hardware/software

partitioning (at the stage of physical implementation, e.g., the sorting task may need ASIC acceleration).

I I I I I

Running Time of Function Call Each Time(millisecond)

1 QuickSort
H PatchSubdividor
PatchXPlane EEEETr

o

PlanesGenerator
GetPatchCenter E‘Q%

H GetDistance §

0] 0.002 0.004 0.006 0.008 0.01 0.012

I I I I I

Figure 3-1. Execution time of for each function call under the following condition:
e Platform: PC with 350MHz Intel Pentium II-MMX processor
e Operating system: Windows NT 4.0 with networking activities disabled

e Compiler: Visual C++ 6.0 with the Maximize Speed option on

3.1 MO: the Plane Generation Module

This functional block corresponds to the function call PlaneGenerator. 1Its task is to generate the two planes U and
V from the parameters (origin and direction) of a given ray, which is required by Step 1 of the proposed algorithm.

Block diagram of the module is given in Fig. 3-2.

3-15

Origin U-ptane
— —r

Plane Generator

Direction

) | V-plane |

Figure 3-2. MO: the Plane Generation Module

3.2 M1 the Patch Subdivision Module

This functional block corresponds to the function call PatchSubdividor. 1t divides an input patch into four sub-
patches, and is usced in Step 1 and Step 2 of the proposed algorithm. The block diagram in Fig. 3-3 shows that, the
module consists of three identical submodules named split-in- half; each of them splits its input patch into two pieces

by executing two matrix multiplications (refer to Formula 11 — 13 in Section 2. 4).

Patch subdividor
» Py,
Splitin
I » half
» pot
Patch > Szl;:fm
- P,
Splitin
half
» P,

Subdivision module:M1

Figure 3-3. MI: the Patch Subdividsion Module

3.3 Submodule: the Point Evaluator

This submodule calculates the sign-distance (refer to Formula 16 in Section 2.5) from a single point (a control point
of a patch) to one of the two planes (U or V) that determine a ray, and outputs the obtained sign information which

indicates the point’s position with respect to the given planc. Block diagram and functionality of the submodule is

given in Fig. 3-4.
point F- positive
—_— ———
point evaluator
plane negative
—_—> s

3-16

positive negative meaning
0 0 point is on the plane
0 1 the distance is negative
1 0 the distance is positive
1 1 prohibited

Figure 3-4. Submodule: the Point Evaluator

3.4 Submodule: the Patch Evaluator

This submodule corresponds to the function call PatchXPlane. Its block diagram is given in Figure 3-5. The input

labeled ‘patch’ contains the sixteen control points of a given patch. Using 16 point evaluators (defined in the

previous subsection) in parallel, the patch evaluator is able to determine the input patch’s position with respect to a

given plane (U or V). The submodule’s output signal miss becomes active when all the 16 control points are on the

same side of the plane, which indicates that the ray missed the patch; as discussed in Section 2.5.

patch evaluator

miss

patch
plane
00
P ${ point point +
| plane gvaluator -
p01 > o |
' point poin +
patch . oP| plane evaluator - ,l
p32 :
P point point +
P rane evaluator -
'+ |p33
plane point point +
——————& P veee_evaluator -

Figure 3-5. Submodule: the Patch Evaluator

3.5 Submodule: the Hull Classifier

Built upon two patch evaluators discussed in the previous subsection, this submodule concurrently evaluates the

position of the input patch against the two planes U and V, thus completes the task of hull classification (refer to

Section 2.5) in Step 3 of the proposed algorithm. The schematic and functionality is given in Figure 3-3. Block

diagram and functionality of the submodule is given in Fig. 3-6.

3-17

U-plane
patch intersect
Hull classify b
V-plane
U-plane
— P
. U-miss
patch evaluator .
} : »intersect
J patch evaluator
V-plane, V-miss
U-miss V-miss intersect
0 0 1
0 1 0
1 0 0
1 1 0

Figure 3-6. Submodule: the Hull Classifier

3.6 Submodule: the Patch Center

As part of the computing task in Step 3 of the proposed algorithm, this submodule calculates the center of a given
patch. It corresponds to the function call GetPatchCenter. The computation involved is described in Section 2.6.

The block diagram of the submodule is given in Fig. 3-7.

patch center

Patch-center f———

Figure 3-7. Submodule: the Patch Center

3.7 Submodule: the Ray/Patch Distance

Corresponds to the function call GetDistance, this submodule calculates the distance from the patch center to the ray
origin, to fulfill part of the computing task in Step 3 of the proposcd algorithm. Its computation is described in

Section 2.7, and block diagram is given in Fig. 3-8.

—_—
—_—

—_

3.8 M2: the Intersection Module

This functional building block combines the submodules hull classifier, patch center and ray/patch distance
discussed in the previous subsections to accomplish all the computing tasks involved in Step 3 of the proposed
algorithm. Block diagram of the module is shown in Fig. 3-9. When entering the module, the input patch will be
immediately evaluated by the hull classifier to see if there is a possible ray/patch intersection. Once confirmed, the
center of the input patch and the ray/patch distance will be calculated successively, and the input patch will be passed

to the culler (refer to Section 2.8) along with the corresponding ray/patch distance (labeled as ‘distance’ in Fig. 3-9).

center
Origin

Direction

Patch-distance

distance

A

Figure 3-8. Submodule: the Ray/Patch Distance

Patch
U-plane Patch
V-plane
M2
Origin distance
P
Direction
—p
""""""""""""""""""""" Patch
-
: center
Patch | i ——
' , > .distance
U-plane Hull- intersect Patch- |
, ’ classify Patch-center distance [’
V:plane
— >
O:riqin

Direction

3.9 The Culler Module

The task of this module is to execute Step 4 of the proposed Ray/Bézier-Patch intersection algorithm. It takes 16
sub-patches and their corresponding ray/patch distances as inputs, and outputs four sub-patches that are most close to
the ray origin. To increase the sorting efficiency and reduce the memory requirement, the ray/patch distance is used
as the sorting key. In order to identify its corresponding patch, each sorting key must carry a tag, as illustrated by

Fig. 3-10. Where the ray/patch distance is in IEEE 754 single precision floating-point format (bit O to 31); a 4-bit

Figure 3-9. M2: the Intersection Module

tag Patch Index is padded to the beginning of the data (bit 32 to 35).

3-19

35

31

30

24 23

Patch Index S

Exponent

Significand

Figure 3-10. Format of the sorting key

Two basic functional units are defined for the sorting task: the upsort and the downsort. Both units take two sorting

keys a and b as inputs, and have two outputs labeled up and down. For the unit upsort, its up output is max(a,b) and

the down output is min(a,b); for the unit downsort, its outputs are defined oppositely. As the sorting task has been

identified as a computational bottleneck (refer to Fig. 3-1), symbols, schematics and function tables of the upsort and

the downsort are shown in Figure 3-11, for possible ASIC realization of the module culler. Note that, since a

negative ray/patch distance (when bit 31 in Fig. 3-10 is 1) means the ray runs away from the patch (refer to Section

2.7), it is always treated as “greater” than a positive distance and therefore will be eliminated by the culler. The

logic expressions for the signal upsel are upsel = a[31](b[3]]+57) and upsel = b[31)(a[31]+GT) respectively, in

units upsort and downsort.

a - up a - up
b T - down b l — down
a 3[30:0) a[35:0] | a a[30:0] ’ _a[35—0]_ .
: mfgr}ﬁi.fde Gt MUX -L- : m::n::’i:de 6T MUX b
b. b{30:0]| comparator b[35:0] | . b b[30:0) comparator b[35:0) . .
a[31) upsel
b[31
downselT downselY
a[35:0] a[35:0]
- :down -1 ° :down
MUX t— MUX tom——
a[31] | b[31] | GT upsort downsort
upsel | downsel | up | down [upsel | downsel | up | down
0 0 0 1 0 b a 0 1 a b
0 0 1 0 1 a b 1 0 b a
0] X 1 0 b a 0] a b
1 0 X 0 1 a b] 0 b a
|] X 0 1 a b 0 1 a b

Figure 3-11. Symbols, schematics and function tables for functional units upsort and downsort

3-20

Using the two functional units upsort and downsort as elements, a bitonic sorting network is constructed as shown in
Fig.3-12. It takes 16 sorting keys (tagged ray/patch distances) as inputs and outputs the tags (the Patch Index in Fig.
3-10) of the four keys with the smallest ray/patch distance values. Sorting elements in the dashed blocks are not

required since only four outputs are needed.

v gzt gt
b < vl—‘iN O[T
Iyl syl >“i” 4‘!}%’!“‘!-!

% g = m’ ------ r%- ----- j— |

r MQLWif

t
L
1

!

Figure 3-12. The sixteen -inputs bitonic sorting network

Based on the bitonic sorting network, module Culler can be completed and its block diagram is given in Fig. 3-13.

selector
A A A A
sl s]l > 5P2
do g
bitonic sorting . SP3
d15

Figure 3-13. The Culler module

3.10 The System Architecture

Base on the load distribution among tasks of the proposed algorithm (refer to Fig. 3-1), and the functional building
blocks described in the previous subsections, the overall system architecture for physical implementation of the

proposed Ray/Bézier-patch intersection algorithm is given in Fig. 3-14.

3-21

' Stage0 |, Stage 1 Co Stage 2 . ' Stage 10 ,
, Stept Step 2,3,4 Co Step 2,3,4 ' . Step 2,3,4,5 '
. ! — 1 . | . o
iy pee—p Co P 0y - L0e0) ‘
' R M2|4 40 , s M 21540 s ' w2 [c0 .
' " | Co 2 > . . 10d0 | .
' . — . 2P — , ' — .
. . L 201 o , 10P) o
.) . - w2 log, i ’3pw w2l nco
' ' > = L > . st 2|
, — p — .
' ! JﬁL} 2 Lﬁ: . 2 >
' M2 X M2 ' M2(C2 '
‘ & 192 2d2 ,
. K 2 » 2 » ' 1002
. w » _— v
! - 1P3 - 1P 2p3 — 1y ' — :
! . Y M2 M M2 f ' M2ic3 '
. ! 103 243 ,
. e -2 > i | > . ' 043 :
. !] A n ' g] '
, . e " . Ll > . fioPT U "
2 2 ’ M2
. 104 2d4 . »
' ' * 5 e . 2 1004 ,
. o |] . o
' o LEsp — HIENS ' N S T '
' . 2|, 45 I M2y 4e ‘3pm M woles | net '
. L > - » > cerow o g5 2| TP
v — ' .
' ' — . 0P ,
. . [HLEY : - > ' . m L:.gﬁﬁ..» '
M2 Ll ¥ M2 X M2
. J 146 2d6 . »
. , » , J? > . g 1046 !
, . — v 2p7 ') 10P7 — '
. , v U\L Ly ' : m gﬂ_’ '
M2 ’ ' M2 . X M2 '
o . 167 5| 0 2d7 ol , Q 1067 . .
\ ‘ 3 L © ' — > o .
T v (¥ — 2P = ' . — - 3
! e Co 70 > S| . T i o 5 ,
' 42108 Do L—pluzly g . ' s <)
,] -2 > . -2 10d8 s
: | NN L .
. . Jiee Co 2pa o : ‘
: ; v g) 9 nc2 '
B ' M2 .. M2 3P M2
149 9 : » .
. ; » 0 N S o> >
! o _——]Pm > M ' :;Lnﬂ,m> '
! o =] P10 o . .
. o =2y 419 M2lag10 ' uz[c10
: o - |——» » .) 10410 '
Ve 1P1Y ' 10P11 — '
' LELL y, P11 .
, . 0 > . — hoeil g,)
: Lp{H2[1411 M2ht1 . ' rmen « Y SN .
' " 2 — , ' 0. 10417
. ’ . L
. ' ™) P12 ' '
" iz e > , : TFEm |LeP1z .
' ' M2l1912 M2 (2912 . ' Lyl :
\ . F—> » . J‘; 10d12
! __J . ‘
' , P13 — g) ' 10P13 .
' ' ‘ i | A c13 ne3
P M2 M2 '3p 10P X, M2
: 1913 1 A
, LALIING CALTIFG [y S p U : £ 10413 —d
' . arm <[13T , ‘ °P'L T .
! . . ' ! ,
. M2y 414 ‘ ——P1M2p44 . —L—pluz[c14
o v, —» Co . 10014 .
| __ -] . D
K . 1P15 o 2P15 “}pie o ' . 10P15 !
') ; : El.ﬁ» o 3 2915 ‘) o >
o v L Co L . o >
! - —— » . 10415 .
‘———-b — D v o . ' o RIS

[m Plane Generator Patch Subdividor Dﬂ Intersection Module

Figure 3-14. The overall system architecture
The proposed architecture contains eleven stages for pipclining. Stage 0 exccutes Step 1 of algorithm; Stage 1 to 10
execute the loop body of the algorithm. They are identical except that stage 10 outputs centers of the last four sub-
patches that will be taken as the ray/patch intersection points. Within cach stage, the inherent parallelism of the
algorithm is explored and supported by the functional building blocks discussed in Subscctions 3-1 through 3-9. The
number of stages was determined based on observations of the algorithm’s convergence rate during the software
verification process. Throughput of the overall system will be determined by the latency of a single stage. Note that,

3-22

the system architecture shown in Fig. 3-14 illustrates the datapath stream of the proposed algorithm with coarse-
grained pipeline stages. It is open to refined intra-stage pipelining and hardware/software partitioning, based on

specific performance requirements and implementation constraints determined by different applications.

4. Performance Analysis

Because of the complexity of the proposed algorithm, and the necessity of executing the algorithm in floating-point
data format, performance evaluation based on implementation models containing significant amount of custom
designed hardware will be beyond the scope of this study. Our evaluation results were obtained by assuming that,
except for the bitornic sorting network (the identified computational bottleneck), an application-specific system for
accelerating the algorithm will be built exclusively on the off-the-shelf TMS320C6701 digital signal processors
(DSPs). We chose the TMS320C6701 because it is representative to the latest generation of high-performance
DSPs, and its development tools are readily available. Although our analysis is based on a specific implementation

model, it provides a good insight for future efforts in physical implementation.

4.1 Overview of the TMS320C67x Family of Digital Signal Processor
The TMS320C67x DSPs are the floating-point versions of the TMS320C6000 DSP family. The TMS320C6701

(aka. 'C6701) DSP is based on the high-performance, advanced VelociTI very-long-instruction-word (VLIW)
architecture developed by Texas Instruments (TI™), which made this device outperform the earlier DSPs and
traditional superscalar designs through increased instruction-level parallelism. Block diagram of ‘C6701’s CPU core
is given in Fig. 4-1. It has 32 general-purpose registers of 32-bit word length and eight highly independent
functional units that can execute the functions summarized in Table 4-1, for both IEEE single- and double-precision
floating-point instructions. It is able to execute up to eight 32-bit instructions or two multiply-accumulates (MACs)
per cycle. Running at a clock rate of 167 MHz (6 ns cycle time), the 'C6701 DSP can deliver up to 1 giga floating-
point operations per second (GFLOPS). Therefore, it possesses the computing power of high-speed array processors
while maintaining the programming flexibility of regular microprocessors.

The ‘C6701 includes a large bank of on-chip memory and has a powerful and diverse set of peripherals. Program
memory consists of a 64K-byte block which can be user configurred as cache or memory-mapped program space.
Data memory consists of two 32K-byte blocks of RAM. The peripheral set includes two multichannel buffered serial
ports (McBSPs), two general-purpose timers, a host-port interface (HPI), and a glueless external memory interface

(EMIF) capable of interfacing to SDRAM or SBSRAM and asynchronous peripherals.

3-23

Program cache/memory

256-bit data

Program Fetch

Instruction dispatch

Instruction decode

Data cache/memory

Data path A Data path B
Register File A Register File B
A A A : | A A a A
Yy Y v y v A 4
u st || Mt || D1 02 || M2 ,sz H L2 |
v v

Figure 4-1. The C67x CPU core

Functional Unit

Fixed-Point Operations

Floating-Point Operations

L unit(L1, L2) 32/40 arithmetic and compare operations Arithmetic operations
32-bit logical operations conversion opcrations
S unit(S1, S2) 32-bit arithmetic operations Compare
32/40-bit shifts and 32-bit bit-field operations Absolute value operations
32-bit logical operations
Branches
Constant generation
M unit(M1, M2) | 16x16 bit multiply operations 32x32 bit fixed-point multiply operations

Floating-point multiply operations

D unit(D1, D2)

32-bit add, subtract,
address calculation
Loads and stores

lincar and circular

Load double word

Table 4-1. *C6701 Functional Units
(Fixed-point operations and floating-point operations arc both available on ‘C6701)

4.2 Techniques for Optimizing the TMS3206701 Coding

The TMS3206701 is supported by a complete set of software development tools which include: an optimizing C
compiler, an assembly optimizer, an asscmbler, a linker, assorted utilities, and a Windows™ debugger interface for

visibility into source code execution. In this study, we have used the following tools/techniques to optimize the

‘C6701 coding:

Data Dependency Detection

To maximize the efficicncy of the source code, the ‘C6701 compiler schedules as many instructions as possible in

parallel.

In order to do so the compiler must determine dependencies between instructions.

techniques have been uscd to help the compiler determine instructions that are independent to each other:

* Use the const keyword to indicate which objects are not changed by a function

3-24

The following

e Use the -pm (program-level optimization) option, which gives the compiler global access to the whole
program or module and allows it to be more aggressive in ruling out dependencies

e Use the -mt option, which allows the compiler to use assumptions that allow it to eliminate dependencies.

Software pipelining
Software pipelining is a technique used to schedule instructions from a loop so that multiple iterations of the loop
execute in parallel. When the -02 or -03 option is invoked, compiler attempts to software pipeline the code. Fig. 4-2

shows the concept of software pipelining.

Cycle Cycle
0! A 0 A1
1 1811 A2 1 B1 | A2 Pipelined-loop
prolog
2 |C1|B2 | A3 2 Ct | B2 | A3
;- ——_—3 """"""" Kernel” ~
S T Bl Rl s \J (new loop body)
4 D21 C3 [B4|A5 6 D4 | C5 | B6
5 D3 | C4|B5 | A6 7 D1 | Cé Pipelined-ioop
: B epilog
6 D4 | C5 | B6 VS d D
7 D1 Cé
8 D6
v

Figure 4-2. Software pipelining

In Fig. 4-2 the stages of the loop are represented by A, B, C and D. The figure shows that a maximum of six
iterations of the loop can execute at one time. The shaded area represents the repeated pattern known as the kernel.
The area immediately before and after the kernel is called the pipelined-loop prolog and epilog, respectively. In
software pipelining, the original loop is essentially replaced by the kernel which becomes the body of a new loop
where all four stages execute in parallel. The kernel determines the efficiency of software execution.
A trip-count is the number of times that a loop executes. Software pipelining is invoked by passing the trip-count to
the compiler with the following methods:
e use the _nassert intrinsic to convey the trip count to compiler
_nassert (x==40)
for (j = 40; j '=0; j--)
¢ count down the trip counter
Before for (i=0; 1 <N;i++) /* N = trip-count*/

After for (i=N;i!=0;1--) /* N =trip-count*/

3-25

* use the -ms0 option to instruct the compiler to only generate the software-pipelined code when the trip
count is known

Under certain conditions, a loop cannot be software-pipclined. See References [SPRU198C] and [SPRU301A].

Loop unrolling

Another technique that improves performance is unrolling the loop, which means, expanding small loops so that each
iteration of the loop appears in the code. The optimization increases the number of instructions available to execute
the loops in parallel. Loop unrolling is used when the operations in a single iteration do not use all of the resources

of the C6701 architecture.

Speculative execution
The -mh option eliminates the epilog for a software pipelined loop, which can result in significant savings in code
size. Software pipelined loop epilogs can often be eliminated if load instructions can be speculatively executed

before knowing whether the results of the executions are needed.

4.3 Code Optimization and Function Call Profiling
With the TMS320C6701 development tool set Code Composer Studio, all function calls listed in Table 3-1 are

optimized and profiled. During the optimization process, the ‘C6701’s C-compiler has fully considered the delays
from load, store and the branching, and the code generated from C source code took full advantage of the software
pipelining technique and the ‘C6701’s superscalar architecture. When profiling the function calls, all data are
declared as single precision floating-point numbers. As the stand-alone simulator does not take into consideration
about the memory bank conflicts (if the memory uses interleaved banks), the external memory access stalls (if the
external memory is not ready), and the existence of cache in the memory hicrarchy (which will make the programs
run faster), all data storage were kept word aligned, thus eliminating the memory bank conflicts. We took multiple
steps to optimize a function call. Each time a new optimization technique is applied based on the code obtained from
the previous step. The function call ParchSubdividor is used as an example to show how effective the optimization
techniques are. Fig. 4-3 shows the function’s *C6701 runtime after each optimization step; and Table 4-2 lists the

optimization techniques applied in each of the steps.

Source codes for all the other function calls are optimized in a similar fashion. Runtimes of the optimized function

calls on ‘C6701 are shown in Tablc 4-3.

3-26

Optimization Effect on Patch Subdivision

step

- N W s OO0 OO N ©®

0 2000 4000 6000 8000 10000 12000

CPU cycles

Figure 4-3. The effect of code optimization on the function call PatchSubdivisior

Table 4-2: Step-by-step optimization procedures on the function call PatchSubdividor

Step | ‘C6701 CPU cycles Optimization Methods Applied

1 11478 none

2 9018 declare parameters as const type

3 7803 file-level optimization by compiler

4 1284 invoke software-pipelining ;
eliminate divide routine call by replacing
multiply

5 1257 loop unrolling

6 317 force constant in expression to float

7 243 speculative execution

Table 4-3. Runtime of optimized function calls on the ‘C6701 DSP

Name of Function Call ‘C6701 CPU Cycles Comments
Split-in-half 182 called 3 times by PatchSubdividor
GetPatchCenter 102
PlaneGenerator 36
PatchXPlane 112 hull classification on one plane
GetDistance 28
Quicksort 3081

4.4 An ASIC Solution to the Bitonic Sorting Network

3-27

From Table 4-3, it is clear that the function call QuickSort optimized for the ‘C6701 is still the computational
bottleneck of the proposed algorithm. Conscquently, a hardware solution to the problem should be considered.
Recall that in Section 3.9 we defined a 10-stage bitonic sorting network for parallel execution of the quick sort
algorithm (refer to Fig. 3-12); schematics of the two basic functional units upsort and downsort for constructing the
sorting network were also given. In order to obtain some actual timing information, we implemented the upsort and
downsort on Xilinx XC4025E-3 FPGAs. Timing simulations on these functional units showed that their maximal
delay time is less than 80 ns. The overall sorting network was than verified via VHDL simulation. The estimated
overall delay of the 10-stage sorting network is 800 ns without any intra-stage pipelining. The estimated hardware

resource is 3,392 CLBs on the XC4025E devices.

4.5 Performance Esetimation

Using the overall system architecture proposed in Section 3.10 (refer to Fig. 3-14) as the architectural framework,
there are many options in implementing the physical system, depending on resource constraints and performance
requirements on specific applications. The system architecture shown in Fig. 3-14 contains ten identical coarse-
grained pipeline stages (excluding Stage 0 which is for preprocessing), each stage can be divided into sub-stages for
refined pipelining, by load balancing (static) the tasks within a single stage, based on the timing information
discussed in Sections 4.3 and 4.4. Two specific implementation cases are discussed here and for each
implementation, performance estimation will be given.

In the first implementation, each stage in Fig. 3-14 is divided into four sub-stages each containing a single ‘C6701
DSP. The original Stage O (for preprocessing) is merged into the Stage 1. Load balancing is then applied to the
computing tasks within Stage 1 followed by re-profiling. The detailed information on Stage 1 is given in Table 4-4,

where the performance estimation is based on the execution time required Sub-stage 2 as it has the largest latency.

Table 4-4. Performance estimation based on Implementation Case 1

Overall system

Number of Number of Pipeline throughput
Sub-stages ‘C6701s Function call(s) executed ‘C6701 clock Cycle in RPl/s
in Stage 1 | used in each by each ‘C6701 cycles used in seconds (ray-patch
sub-stage (6 ns/cycle) intersection per
second)
1 i Split_in_half (called 15 times) 2803
PlaneGenerator (called 1 time)
2 1 PatchXPlane (called 32 times) 3584 2.15x 107 4.65 x 10"
3] GetPatchCenter (called 16 times) 3328

GetDistance (called 16 times)

4 | Quicksort (called 1 time) 3081

3-28

In the second implementation, Stage O in Fig. 3-14 needs to be implemented separately and each of the rest stages is
divided into five sub-stages each containing multiple ‘C6701 DSPs except the Sub-stage 5 (the culler), which is
implemented in hardware (refer to Section 4.4). Again, static load balancing is then applied to the computing tasks
within Stage 1 followed by re-profiling. The refined pipeline stages are illustrated in Fig. 4-4, and the detailed
information on Stage 1 is given in Table 4-5, where the performance estimation is based on the execution time

required Sub-stages 1 and 2 as they have the largest latency.

intra-stage 1 intra-stage 2 intra-stage 3 intra-stage 4 intra-stage 5
: : : Patchl ~———1
= E R : \mESSSomTmmmooooooo- ' b
Patch subdividor :) | I ! I 1
: CTT T 1Pog - : i —-—Pl _’CBMB! : : :
el A
: : [;
iy} SPlitin |t yoplang ! Hul ! fimersea) |Pateh- distance ! |
! H [B Di N H
=== F half P, __—‘:‘ Classify 1 ™ center » Distance ——i '! E
|) » H i t
I : V-planﬁ ! | H i |]
Pateh| 1 spiit in) b l : | | ! : | 5 :
I half | p | i | P ! ! L3
[1 P memm———e : ' |
S i ndg orign | B
____ ! Splitin ! : 9 : ! | | t
P haf }lP Direction : : : E :
11 . |
LT I S B
- b
i |
] |
I |
||
Figure 4-4. Sub-stages inside a typical stage in Implementation Case 2
Overall system
Number of Number of Pipeline throughput
Sub-stages ‘C6701s Function calls executed ‘C6701 clock Cycle in RPl/s
in Stage 1 | used in each by each ‘C6701 cycles used in seconds (ray-patch
sub-stage (6 ns/cycle) intersection per
second)
i 4 Split_in_half (called 1time) 182
2 8 Split_in_half (called 1time) 182 1.092 x 10°® 9.16 x 10°
3 32 PatchXPlane (called 1 time) 112
4 16 GetPatchCenter (called 1 time) 130
GetDistance (called 1 time)
5 None Quicksort N. A
(by ASIC) (executed in hardware) (800 ns
delay)

Table 4-5. Performance estimation based on Implementation Case 2

3-29

This implementation leaves a lot of room for further expedition of the execution. For instance, optimizing the code
for the function Split_in_half at assembly language level could reduce the number of ‘6701 cycles required by Sub-
stages 1 and 2 and thus the pipeline cycle time could be shortened. The two case studies show that: 1) for more
significant performance gain, it would be more efficient to fine-grain the pipeline stages and fully support the
inherent parallelism for each computing tasks inside the stages; 2) when the pipeline stages are finer grained, the

ASIC approach would be a more cost-effective option for implementation.

5. Conclusion

In this study, an algorithm for solving the ray/Bézier-patch intersection problem has been developed and verified.
Although its computational complexity is on the same order of some known algorithms, the proposed algorithm has
the advantage of being suitable for parallel and pipelined execution. The corresponding systems architecture for
physical realization has also been developed with all the functional building blocks specificd. Computing tasks
required by the proposed algorithm are profiled on the TMS320C6701 DSP and the computational bottleneck is
identified. To eliminate the bottleneck, a hardware solution has been proposed and verified. Performance data are
obtained based on two implementation models built upon the ‘C6701 DSPs, with and without additional custom
hardware, respectively. The data show that with the proposed algorithm, more than one million RPIs/s (ray-patch
intersections per second) could be calculated on specially designed computing systems based on the proposed
architecture, with the pipeline stages being refined and the inherent parallelism of computing tasks inside the pipeline
stages being supported. The data also suggest that higher performance can be achieved by optimizing the code at
assembly level (for functional blocks implemented in software) or more efficiently, by replacing the functional
building blocks with custom-designed hardware. We anticipate that with the rapid technological advances, some

practical systems based on this study could be built in the near future.

Acknowledgments

The author wishes to acknowledge the financial support given by the AFOSR for making this work possible. The

author also would like to acknowledge and thank the following individuals, for their participation, assistance and

encouragement:

At Washington State University: Dr. Robert Lewis, graduate students Renwei Wang and Shuyan Li;

At the AFRL/IFSD Wright Rescarch Site: my team leader Luis Concha, teammates Brian Kadrovach, Britton
Read, Keith Pedersen, David Bawcom and many friends;

At the RDL: Ms. Johnetta Thompson and Ms. Rebecca Kelly-Clemennons.

Without them, this project would never have been completed.

3-30

References:

[Hai89] Eric Haines, “ Essential ray tracing algorithms,” Chapter 2 in An Introduction to Ray Tracing, A.S.
Glassner Ed., Academic Press, 1989.

[AK89] James arvo, David Kirk, “A survey of ray tracing acceleration techniques”,Chapter 6 in An Introduction
to Ray Tracing, A.S. Glassner Ed., Academic Press, 1989,

[Hung98] Donald L. Hung, “ A Study on Accelerating the Ray/Triangular-facet Intersection computation in
Xpatch”, Technical Report to the U.S. Air Force, August 1998.

[FP79] L.D.Faux, MJ.Pratt, “Computational Geometry for Design and Manufacture”, Ellis Horwood Ltd., 1979

[FB94] Alain Fournier and John Buchanan, “Chebyshev Polynomials for Boxing and Intersections of
Parametric Curves and Surfaces”, EUROGRAPHICS’94, Vol. 13,No 3, pp129-142.

[KAJ82] James T. Kajiya, “Ray tracing Parametric Patches”, Computer Graphics, 16(3) pp245-254, July 1982

[BS93] W.Barth and w.Sturzlinger, “Efficient Ray Tracing for Bézier and B-spline Surfaces”, Computer
Graphics Vol.17,No 4, pp423-430,1993

[CSS97] Swen Campagna, Philipp Slusallek, Hans-Peter Seidel, “Ray tracing of sline surfaces: Bézier clipping,
Chebyshev Boxing, and bounding volume hierarchy - critical comparison with new results”, The Visual
Computer,Vol.13,pp265-282,1997

[NSK90] Tomoyuki Nishita, Thomas W. Sederber, Masanori Kakimoto, “Ray tracing trimmed rational surface
patches”, Computer Graphics, Vol24, No 4, pp337-345, Aug.1990

[KK96] Hyun-Joon Kim,Chong-Min Kyung, “A new parallel ray-tracing system based on object
decomposition”, The Visual Computer,Vol.12, pp244-253, 1996

[BB94] Didier Badouel, Kadi Bouatouch, “Distributing data and control for ray tracing in parallel”, IJEEE
Computer Graphics and Application,Vol.14, No.4, pp69-77,July 1994

[FP92} Alian fournier, Pierre Poulin, “A Ray Tracing Accelerator based on a Hierarchy of 1D Sorted List”,
Technical Report:UBC CS TR-92-37, http://www.cs.ubc.ca/cgi-bin/tr/1992/TR-92-37

[FOL97] James D. Foley... “Computer Graphics Principles and Practice”,2nd in C, Addison Wesley, 1997

[WWO8] Alan Watt, Mark Watt, “Advanced Animation and Rendering Techniques Thory and Pratice”, Addison
Wesley 1998

[CAB4] Joseph J.F. Cavanagh, “Digital Computer Arithmetic: Design and Implementation”, 1984, McGraw-Hill

[SPRUIS7E] “TMS320C6000 Optimizing C Compiler User's Guide”, Texas Instruments, 1999

[SPRU189D] “TMS320C6000 CPU and Instruction Set Reference Guide”, Texas Instruments, 1999

[SPRU198C] “TMS320C62x/67x Programmer’s Guide”, Texas Instruments, 1999

[SPRU301A] “TMS320C6000 Code Composer Studioo Tutorial”, Texas Instruments, 1999

(PH98] David A.Patterson and John L. Hennessy, “Computer Organiztion & Design:the Hardware/software
interface”, Morgan Kaufmann, 1998

[SFK97] Dezso Sima, Terence Fountain, Péter kacsuk, “Advanced Computer Architectures: a Design Space

Approach”, Addison Wesley, 1997

3-31

TRANSFORM METHODS FOR WATERMARKING
DIGITAL IMAGES

Adam Lutoborski
Professor of Mathematics

Department of Mathematics

Syracuse University
Syracuse, NY 13214-1150

Final Report for:
Summer Research Extension Program

Air Force Research Laboratory, Rome NY

Sponsored by:
Air Force Office of Scientific Research
Bolling Air Force Base, Washington, D.C.
and

Syracuse University

December 1999

Transform Methods for Watermarking Digital Images

Adam Lutoborski
Professor of Mathematics
Department of Mathematics

Syracuse University

December 14, 1999

Abstract

We investigate a class of wavelet based transform methods for watermarking digital
images. An transform method consists of a discrete wavelet transform followed by
iterated transforms optionally and a random additive transform. We analyze DWT-
projection transform and two DWT-SVD multiplicative transforms DWT-SVD-SV and
DWT-SVD-D.

TRANSFORM METHODS FOR WATERMARKING
DIGITAL IMAGES

Adam Lutoborski

1 Previous Results and Project Motivations

Digital watermarking is embedding of imperceptible markings into digital images (and other
signals). The watermark depends on the owner’s secret numerical key and can be detected by
using an appropriate numerical detection algorithm. The crucial property of the watermark
is its ability to withstand (to the similar degree as the image itself) image modifications re-
sulting from an assortment of image processing operations such as compression and filterings
of various kinds.

Watermarking techniques for digital images can be divided into two groups: spatial
domain methods which insert the watermark directly in the pixel values of the image and
transform methods which insert the watermark in the output of a certain transform of the
image.

Many important general aspects of the transform based watermarking methods have been
thoroughly discussed in the pioneering papers of I. Fridrich (3], [4], [5], [6], (7], A.H. Tewfik
18], [14], [15], [16] and other scientists working in the general area of signal processing and
specifically image processing.

Most of the transform based watermarking techniques are based on the discrete Fourier
transform (DFT) and most often on the discrete cosine transform (DCT), see [13], [14].
A sophisticated transform watermarking method based on the DCT was developed by J.
Fridrich in [7). Two independent watermarks are inserted in the DCT coefficients of the
input image. To produce a low frequency watermark, N lowest frequency DCT coeflicients
are modified in a controlled way using specially introduced index function. Next a spread
spectrum technique is used to modify the middle frequency DCT coefficients. The resulting
superposition of the two watermarks guarantees high robustness with respect to JPEG com-
pression, mosaic filter and pixel permutation but also to contrast / brightness adjustments.

In their report ”On Digital Watermarks” J. Fridrich, A. Baldoza and R. Simard [7] em-
phasized the importance of using the transform methods in obtaining robust watermarks in

digital images. In the conclusions the authors made several important observations concern-

4-3

ing the security (ability to withstand an attack) of their DCT based watermarking method.
They note that "methods in which watermarks are spanned by publicly known basis func-
tions may provide less security than previously thought”. It is in response to the quoted
concern that the wavelet transform based methods are beginning to appear recently in the
literature. We refer here the work of D. Kundur and D. Hatzinakos (8], [9], [1], [2], [20], [21]

and the investigator in [10] .

2 General Transform Methods in Watermarking

It is necessary to introduce some of the basic notations and definitions to enable us to present
our previous results and formulate the results of this project.

Digital images, denoted by capital Latin letters, will be matrices with integer entries
in the interval [0,255]. The set of all such images is denoted by I. The inner product of
matrices A, B € R**" is given by (4, B) = trace(AT B) and the Frobenius norm is given by
|14l = (4, A)l/ 2. The Frobenius norm is very useful in matrix computations but ||4 — Bl|
is known to be an inadequate tool for measuring perceptual distance between images A and
B. It is an open question in HVS (human visual system) how to define a distance function
p:Ix I R such that p(4, B) is an appropriate ”visual” distance between images A and
B.

An algorithm which for a given input image M and a value of a key parameter k, k € N
constructs a watermarked image W(M) is called a watermarking algorithm. Any such

algorithm defines a watermarking mapping
W:IxN=I,

(M, k) = W(M, k).

The image W(M, k) is called the watermarked image and W(M, k) — M is called the
image watermark of M. The output of the watermarking mapping W(M, k) depends on
two variables: the original image M and the value k of a secret key for a random number
generator which will supply a random parameter to be used in determining the watermark.
It is assumed that the dependence W(-, k) is continuous and is known (and subject to attack)
but the dependence W(M,) being random is not known.

We say that the watermark W(M, k) — M is detectable in the image N with correlation

7,0 <7 < 1if and only if

_ I(W(M7k) -MaN-M)'
O (VBN = Ioyat, iy = 3Ty — 041 > ™

If the above value of 7 is large and close to 1 the probability that N = W(M, k) is high. If
CM(W(M,k),W(M,m)) <mw foral m#k meN

then we say that a detection threshold for the watermark W(M, k) — M is w. A detection
threshold must be set for the above detection procedure before testing any watermarking
method for robustness. To assure the effectiveness of the detection procedure the threshold
must minimize the number of false detections and non-detections.

The detection function Ca (W(M, k), N) requires the explicit knowledge of the original
image M. All such detection functions are called non-oblivious. The evaluation of the
detection function Cjy is disproportionately cheap in comparison with the evaluation of the
watermarking mapping. Not surprisingly, it provides only a very basic statistical correlation
measure between two sets of data. The detection function C)ps is completely unrelated to
the important data characteristics. The more W(M, k) depends on the image M, as might
be necessary, the closer the correlation Cp (W(M ,k), W(M,1)) will be to the detection
threshold 1y making detection impossible.

In view of these observations we may formulate some basic requirements for the water-
marking mapping and more specifically for the dependence W(M, -). Assuming that M, N
are given and W(M,) is known, we can identify N as W(M, k) only if we know the secret
key k € N or if we know k € N and W(M, k) where M is very close to M.

We can only identify N if

Therefore the dependence W(M,-) should be such that W(M, k) and W(M,I) are both
as far from M as it is ”visibly” possible and at the same time the inner product of these
matrices should be as small as possible for k # I. The ideal (for the detection function Ci)
watermarking mapping W(M, -) should have the property that Cy (W(M, k), W(M,1)) =0

for k # 1. Figure 1 illustrates such requirement.

W(M, k)

W(M, 1)

Figure 1: Ideal watermarking mapping W(M,-)

3 Discrete Wavelet Transforms and Digital Watermarks

One of the most promising and effective transform techniques in modern signal processing
is the wavelet transform which is computed by correlating a given signal with dilates and
translates of a single function) possessing exceptional time and frequency localization
properties. A wavelet 1 is a function (square integrable with mean zero) such that the
family of its dilates and translates

{2%¢(2J‘t-k)}

J.kEZ

is an orthonormal basis in the space L%(R).
For any square integrable function f we have the following expansion in the above wavelet
basis

f&) =" disp(2it - k)

FjEZ kel
with
=2t [fy@t- b

The set {d;k}; xez Of expansion coefficients is called the discrete wavelet transform (DWT)
of the signal f. We may interpret the partial sums in the above expansion with respect

to j as the approximations to f at the resolution 27, Formally the approximation to f at

4-6

the resolution 27 is defined as an orthogonal projection of f onto a space V; C L*(R). The
ascending sequence {V;}, of such spaces is called a multiresolution approximation of L*(R)
when each V; is spanned by dilates and translates of a single function ¢ called a scaling
function.

Using both the wavelet and the scaling function we may rewrite the expansion for f as:

f) =" 2%a;p0(2t — k) + i 3 2kd; (27t — k).

Kez J=J kEZ

The expansion coefficients a;,x are called approximation coefficients and the coefficients d; x
are. called the detail coefficients at the resolution 27 or level j. The above decomposition
can be computed recursively for j by the fast dyadic algorithm of Mallat {11].

The approximation coefficients are given by:

aj1k = Y Mi_2kaj,
lez

and the detail coefficients are given by:

dji1k = Zyl—%aj,l
lez

where the coefficients h,,, g, depend only on the scale j on ! and the scaling function ¢.
The coefficients a; s can be reconstructed from the approximation and detail coefficients

at the next coarser scale from:

ik = hi_akaj-14+ > gi-akdio1,.
ez lez

Unlike the DCT the DWT is not a single vector (or a matrix in the case of images). The
sets of the approximation and detail coefficients at all levels form a binary tree of coefficients.
The DWT has a recursive structure at each step requiring computing convolution and dec-
imation (quadrature filter), see [19] for comprehensive treatment of wavelet programming
technology.

Image processing deals with discrete, finitely supported functions of 2 variables and in
order to put to use the one dimensional wavelet transform two significant steps are to be
taken. First, one dimensional wavelet base has to be modified for use on a finite interval
by using periodic, folded or boundary adapted wavelets. Next, one dimensional wavelet
algorithms have to be extended to two dimensions by taking separable approach and working

with tensor product formulas.

4-7

Expanding a function of one variable over a finite interval requires modifying the wavelet
bases. This can be achieved by using periodic, folded or boundary adapted wavelets.
Assume that the approximation and detail coefficients at the resolution J are finite and
periodic outside a finite interval and given by vectors a’,d”, o’/ = (@arm)m=0,... 271,
d’ = (dJ,m)mzo,... ,29 -1+

We can formulate the dyadic DWT algorithm for computing approximation and detail
coefficients at the next coarser level in the matrix form as computing the vectors a/ =

(@j,m)m=0,...,25 1, ¥ = (dj,m)m=,... 251 for j = 27,...,1 from the following formulas
-1

&' =H, ,d

&1 = j—laj
and the inverse dyadic DWT from
aj = H]-T_laj_l + G}"_ldj—l

where H;, G; are 27~! x 27 matrices with entries (Hj)kg = hi—2k, (G kg = gi—2x-
Using the above notation the DWT in matrix terms can be formulated as an orthogonal
transformation @ of the input vector a” into vector b’ containing the coarse approximation

a® and all intermediate detail coefficients

dJ—l

The matrix Q is called the DWT matrix. The product Qa’ can be computed efficiently
at a cost of O(N) where N = 27 which is asymptotically faster than the DCT transform
requiring O(N log, N} operations.

In the case of a square N x N image M = AVY), N = 27 the separable DWT using

wavelet 1) results in 3J + 1 submatrices
B = (4® (D, DP, D}y 4.
see [11]. Introducing a corresponding DWT transformation we may write it as

Fy(AV))y = BU),

4-8

The approximation AU~1) at the next coarser level is obtained from A¥) by one step of the

dyadic DWT algorithm. The resulting transform is denoted by
Fu.i (A(J)) = (A(j_l) ’ {Dy—l)) ng-l) ’ ng—l)}))

and if the context doesn’t require it we will abbreviate Fy ; = F;.
Consequently, by composing J steps of dyadic algorithm we obtain A© the coarse ap-

proximation of the input image A():
Fi...Fs(ADy = AO).

Our description of the rudiments of the DWT transform is now complete and using it we
can concisely present two DWT-based watermarking methods developed by the investigator
in [10].

Both our transform-based watermarking methods consist of three main steps: wavelet
transform, watermarking transformation and the inverse wavelet transform.

Analytically, let A = AY) and 1 <1 < J. First, steps of the dyadic DWT are computed:
Frogr..-Fr(AD)) = (A(j—’), {DgJ_l):DgJ*')ngl_’)}) .
Next, the watermarking mapping 7 is applied to the approximation coefficients AU-D
AU=D o (AU,
Finally the watermarked image W(A) is reassembled by computing the inverse dyadic DWT:
W(A) = F5 . Frly (T(AV-D, BU-D))
To shorten this watermarking formula we rewrite it as:
W(A) = F; Y, (T(AU-'),B(J—'))) :

In [10] we introduced and tested two additive watermarking mappings. The DWT-SVD
watermark was defined as follows:
Let AU-Y) = UXVT be the singular value decomposition of the transformed image. We

set
TAVN =UsvT + OEVT

where £ = ¢ diag(rand) is a random diagonal matrix with norm controlled by ¢ and u,v

are partially random modifications of orthogonal matrices U and V.

4-9

The Wavelet-random modulation watermark was defined as follows:

TAVD)=AV-D + R

where R is a random, additive modulation obtained in a sequence of steps containing: (a)
generation of a random matrix, (b) using cellular automaton to coalesce the pattern of the
entries, (c) smoothing, (d) scaling. The above procedure was originally implemented by I.
Fridrich (3] in a DCT-based watermarking algorithm.

The Wavelet-SVD watermark allows for partial analytical control of the magnitude, ran-
domness, image dependency and watermarking selected parts of the space-frequency content
of the image. Our numerical tests indicated that the Wavelet-SVD detection thresholds were
lower, allowing easier detection and its was faster to embed. The SVD watermark embedded
in AU could be detected at coarser levels in AV=%) k > | whereas random modulations
could not be detected.

None of the two watermarking methods equipped with the same detection procedure

(however each with its own threshold value) produced justifiably superior robustness results.

4 Tterated Transforms Methods in Watermarking

We begin by explaining some general reasons for using transform based watermarking. Com-
puting a transform of an image is equivalent, in terms of linear algebra, to representing the
image as a linear combination of vectors of a new basis. The coefficients of this linear com-
bination constitute the transformation coeflicients of the image. Transformation coefficients
(as is the case for DCT and DWT) depend on a majority of the image pixels (image coeffi-
cients in the spatial basis). As a result the perturbations of individual transform coefficients
affect almost all pixels of the image, or in other words, local changes of transform coeflicients
produce global changes in the image. The degree to which selective postprocessing of the
transform coefficients affects the image depends strongly on the transform and can be best
assessed analytically for the wavelet transforms.

Watermarking methods using DWT combined with iterated transforms has two under-

lying advantages:

o protection of the watermark from filtering operations which act on the image directly

but locally

o making the detection procedures indirect and difficult by composing the primary trans-

form with iterated key dependent crypto-transforms

Before discussing specific techniques it is necessary to list the main reasons for our interest

in the wavelet transform based approach to watermarking;:
e concision in representation of the transformed image

¢ robustness to wavelet-based compression algorithms

o locality in space-frequency allowing selective local transformations of the image and

adapting the watermark to the image

e security resulting from wavelet transform selection, depth of transform selection and

possibilities for design of key dependent crypto-wavelets

¢ computational cost proportional to the size of the input data

Figure 2: Iterated Transform Watermark

w
watermarked
image
image
b
F F!
Y
transformed watermarked
wavelet A T
) > wavelet wavelet
coeflicients
coefficients coefficients

The iterated transform watermarking method consists of two basic steps: an iterated

transform Z and, optionally, a random additive transform 7. In this project we investigate

only the iterated transforms, whereas the random additive transforms were studied in [10].

The composition of both these steps constitutes the watermarking transformation of the

wavelet coefficients. We will describe in detail two basic types of transforms which we used
in the transform Z: DWT-projection transforms and DWT-SVD multiplicative transforms.
Both of these transforms can be applied separately or composed iteratively, entrywise and
blockwise.

The roles of the components Z and 7T in the watermarking method are different. Iterated
transform Z preserves the norm of the wavelet coeflicients and is used to continuously and
selectively modify subsets of wavelet coefficients. We interpret Z(A) as a DWT correspond-
ing to an unspecified crypto-wavelet whose properties depend on the user-defined secret
parameter on which Z depends. The iterated transform acts by postprocessing the output
of the DWT which makes the transform identification difficult. An iterated transform can
also be used as a tool to make quantization changes in the transform coefficients and enable
us to identify the transformation by the characteristics of its output. If such construction is
numerically practical it provides an oblivious watermarking transform.

Combining iterated transforms could provide means of constructing watermarking trans-
forms which affect specific regions of the image, perhaps the neighborhoods of the segmen-
tation edges where local changes are least visible.

Any watermark, additive or multiplicative applied to A will depend on parameters con-
trolling its strength, randomness and geometric properties. The range of those parameters
is mostly established experimentally. The strength (regularization) parameter, for example,
cannot be too small because the numerical detection of the resulting watermark will be dif-
ficult but also it cannot be too big because its visual detection in the image will be possible.
It would be a viable optimization task to computationally establish the range of the strength
parameter € as a solution of an optimization problem which seeks the maximum value of €

which does not allow for visual detection of the watermark.

5 DWT-Projection Transform

As the simplest watermarking transformation based on the wavelet transform we consider the
following iterated transform 7 in which the watermark Z(A) depends globally on all DWT
coefficients, however it modifies significantly only a small subset of wavelet coefficients.

Let A = A be the matrix of approximation coefficients at level j resulting from applying

the DWT F to a given image. We construct a random, key-dependent rank-one matrix d

4-12

and orthogonally decompose A into two orthogonal components as follows:

A=Ay +Ad1.
where
Adz—(ﬂ%f?d A =A- Ay

We next define the projection enhancing transformation Z as
Z(A)=(1+e)Ag+0A,:.

We select the parameters e, 0 < e < (J|A]| — ||44ll)/}|Aall and &, & = d(€) so as to preserve

the norm of the coefficient matrix A:
WZ(A)l = [14]]-

This implies that

1
5= (llAII2 -1+ e)2I|AdII2) :
Al = [l 44l

The projection enhancing transformation Z amounts to increasing of a randomly (key-
dependent) selected low-dimensional component Ay of A. The parameter e is the strength
of the transformation (watermark). The magnitude of change in the transformed coefficients
of A depends continuously on the size of e.

Finally in order to have a normalized strength parameter €, 0 <& < 1 we set

lAall
AT = 14d]

£ =
Consequently we obtain

_ 1Al
I(4) = (1 —6-c(1- ||A—d”))Aﬂ, +64

where

AR = (-)l Ad + eI
o= (A)

The experimentally recommended value of ¢ is € ~ 0.03. This value is the maximal parameter
strength yielding an invisible image watermark.
For the purpose of comparison we define a simplified projection enhancing transformation

7 which does not preserve the norm of A and only increases the component A4.

4-13

Agt

Figure 3: DWT-projection transformation

Fore >0

= Al = 1144l

IT=e———A4+ A
Adl ™
where
(4,d)
Ayj=1—"24d.
“

6 DWT-SVD Multiplicative Transforms

Let A = AU) be the matrix of approximation coefficients at level j resulting from applying
the DWT F to a given image. Our aim in constructing the DWT-SVD watermarking
transform is to make the watermark 7(A) depend globally on all transform coefficients.
That is not the case when the watermark is a random additive perturbation of wavelet

approximation coefficients in A.

Figure 4: DWT-projection watermarks with € = 0.06 and € = 0.8

We compute the singular value decomposition
A=UzVT,

The resulting orthogonal matrices U, V consisting of left and right singular vectors of 4,
and the diagonal matrix T of singular values depend globally and nonlinearly on all entries
of A. A suitable modification of the SVD produces a watermark which depends globally and
nonlinearly on A and which is image dependent. The geometric distortions of the original
image (because of this complex structural dependence of the watermark on the image) have
less potential of dislocating the watermark from its relative position in the image transform
A and hence in the image itself. We begin by defining the DWT-SVD-SV transform Z. We
define

(A =0zVT

where the orthogonal matrices U, V are the modified matrices of singular vectors of A and

are given by
U =0yU V=0vV

The matrices Oy and Oy are key dependent rotation matrices which are perturbation of
the identity I. Clearly, the transform Z preserves the norm of A. The strength of the

perturbation in U and V which Oy and Oy induce is given by the parameter ¢. Parameter

4-15

value € > 0 corresponds to orthogonal matrices Oy, Oy with determinant 1 such that e = 0
corresponds to Oy,0Oy — I. The dependence of Oy and Oy on € is continuous. The
recommended value of ¢ is € ~ 0.01. This value is the maximal parameter strength yielding

invisible image watermark.

Figure 5: DWT-SVD watermarks with £ = 0.01 and € = 0.15

We will next define the second DWT-SVD multiplicative transform 7 called DWT-SVD-
D. This transform smoothly modifies the singular values by multiplying the diagonal matrix
of singular values of the coefficient matrix by a key dependent orthogonal matrix R with

determinant one. We set
I(A) =UsVT
where
¥ =Rr.

Clearly, the transform 7 preserves the norm of A. As in the previous schemes the strength
of the perturbation that the multiplication by R = R(e) induces is given by a parameter and
€ = 0, R = I when € > 0. The recommended value of € is € &~ 0.01 which is the maximal

parameter strength yielding an invisible image watermark.

4-16

Figure 6: DWT-SVD-D watermarks with € = 0.015 and € = 0.25

7 Detection and Robustness Tests Results for Iterated

Transforms Watermarks

In order to set the appropriate thresholds for the detection function in the iterated transform
watermarking method, the original test image was marked with owner’s watermark using
the DWT-Projection transform (dwtpmark.m), DWT-SVD-SV transform (dwtsvdmark.m)
and DWT-SVD-D transform (dwtsvddmark.m).

We used four basic detection methods for the purpose of thresholding and for robustness
tests performed on our iterated transforms watermarks. The basic detection function was
applied to: DWT coeflicients of the image, the image, DCT (denoted as D) of the DWT
coefficients of the image, DCT of the image.

To abbreviate the above description of various detection procedures we set:
Cry = Crany (Z(F(M), k), F(N)) detection in the DWT coefficients (V)
of the image N
Cy = Cy W(M, k), N)) detection in the image N
Corm)) = CoFmy) (DZ(F(M),k)), D(F(N))) detection in the DCT of the DWT
coefficients of the image

Cpm) = Cory (DW(M, k)), D(N)) detection in the DCT of the image

4-17

Table 1: Detection Thresholds for Iterated Transform Methods

Threshold | DWT-Projection | DWT-SVD-SV | DWT-SVD-D
TI 0.40 0.60 0.55
™wW 0.55 0.65 0.65
DI 0.55 0.70 0.50
DW 0.60 0.60 0.50

In our thresholding experiments we set the owner’s watermark to seed=100. For each of

our watermarking transforms we plotted the values of the detection function
Cm(Z(F(M),100),Z(F(M),1)), 1<1<200

to set the detection threshold 7z for DWT coefficients.

We also plotted

Cm(W(M,100), W(M, 1)), 1<1<200

to set the detection threshold Ty for watermarked images.

Consequently the experimental threshold for DWT coefficients satisfies

Cm(Z(F(M),100), Z(F(M),1)) <tz 1<1<200, I+#100
and the experimental threshold for images satisfies
Cmu(W(M,100), W(M,1)) <7y 1<1<200, 15100

The thresholding results for detection of the watermark in the DWT coefficient matrix and
in the image reconstructed from watermarked DWT coeflicients are given for the DWT-
Projection transform in Figure 7 and in Figure 8, for the DWT-SVD-SV transform in Fig-
ure 9 and Figure 10 and for the DWT-SVD-D transform in Figure 11 and Figure 12.

All thresholding results are summarized in Table 1. In conclusion we make the following

observations concerning the detectability of our iterated watermarks:

o iterated transform watermarks DWT-Projection, DWT-SVD and DWT-SVD-D are

easily detectable using the standard detection function Cjps

e the detection thresholds for image dependent iterated transforms watermarks are
higher than the thresholds for the image independent random additive watermarks

resulting in lower detectability of iterated transform watermarks

4-18

Our robustness testing followed exactly the methodology applied in [10] which was based on
the work of J. Fridrich, see [7].

8 Conclusions

Two main classes of wavelet based watermarking methods dominate the image processing
technology.

The methods in the first class generate random perturbations in the DWT coefficients
and produce watermarks with controlled statistical characteristics.

The methods in the second class generate image dependent geometric transformations
in the DWT coefficients and produce watermarks with controlled geometric characteristics.
The iterated transforms methods introduced and studied in this project belong to the second
group.

As a rule the detection thresholds for our image dependent methods are higher then
for the wavelet-based methods from the first group which we studied in [10]. However all
three watermarking methods studied here (including the simplest DWT-Projection method)
have good detectability properties. The robustness properties, based on performed tests,
are comparable to wavelet based methods studied in [10].

The most important results achieved in the development and implementation of iterated

transform watermarking methods was obtaining:

¢ Crypto-wavelet type security provided by key dependent transform whose output dif-
fers significantly from the standard DWT but whose standard wavelet synthesis pro-

vides an invisible watermark.

¢ Watermarks depending nonlinearly and nonlocally on the image, preserving the gray
level in the L? sense and providing a tool for the development of watermarking methods

robust to specific geometric transformations {attacks).

e Watermarks with specific geometric characteristics (geometric quantization) corre-
sponding to the strength parameter settings, providing a tool for the development

of oblivious watermarking methods.

o Watermark robust with respect to wavelet compression.

4-19

Table 2: Robustness Testing Results for DWT-Projection Method

Detection Function

Test Cr(m) Cm Co(x(m)) Cp(m)
Blurring
(number of iterations) 1 0 2 1
JPG Compression 100 100 10 14
(quality units) (no detection) | (no detection)
Table 3: Robustness Testing Results for DWT-SVD Method
Detection Function
Test Cron Cm Cpra) Con)
Blurring
(number of iterations) 2 0 1 2
JPG Compression 9 89 100 9
(quality units) (no detection)
Table 4: Robustness Testing Results for DWT-SVD-D Method
Detection Function
Test Crm) Cm Cp(Fmy) Cpmy
Blurring
(number of iterations) 2 0 2 2
JPG Compression 10 91 45 13
(quality units)

07 T . : — T T T T

06} b

051 1

Correlation
o
»

T

1

o
W
T
1

0.2 b

o1r

o 1 1 1 1 L L i kL 1
o 20 40 60 80 100 120 140 160 180 200
Watermark Seed

Figure 7: Detection of owner’s watermark in the DWT coefficients (seed=100 among 200

random watermarks). DWT-Projection watermark (wavelet= db6, level=3, £ = 0.03).

Thresholding dwipmark: Image

08 -

07 -1

06 -

Correlation
o4 o o
w > CJ
T T
1 1 1

o
[N
T

0.1

0 i 1 L L L 1 L kL 1
[20 40 60 80 100 120 140 160 180 200
Watermark Seed

Figure 8: Detection of owner’s watermark in the image (seed=100 among 200 random

watermarks). DWT-Projection watermark (wavelet= db6, level=3, £ = 0.03).

4-21

Thresholding dwtpmark:Wavelet Coefficients

1 T T T T T T T T T

0.9 B

08 ~

07 b

Correlation
© o o
w - o
T T T
1 1 'l

°
N
T

0.1 H

0 1 1 i 1 1 L 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Watermark Seed

Figure 9: Detection of owner’s watermark in the DWT coefficients (seed=100 among 200

random watermarks). DWT-SVD-SV watermark (wavelet= db6, level=3, ¢ = 0.01).

Thresholding dwtpmark(Image Difference)

1 Y T T T T T T T

08 -

Correlation
o o ° o
w o ~ o
T T
L 1 1

o
»

o
w

0 1 1 1 L 1 2. d. 1 i
0 20 40 60 80 100 120 140 160 180 200
Watermark Seed

Figure 10: Detection of owner’s watermark in the image (seed=100 among 200 random

watermarks). DWT-SVD-SV watermark (wavelet= db6, level=3, ¢ = 0.01).

4-22

Thresholding dwisvdd \ let Cosfficients
09 T T T T T T T T T

081 -

08 b

03 \ﬁt
0.2
0.1 -1

i 1 1 L 1 1 1 1
¢ 20 40 60 80 100 120 140 160 180 200
Watermark Seed

Correlation
o o
» wn

T T
1 1

Figure 11: Detection of owner’s watermark in the DWT coefficients (seed=100 among 200

random watermarks). DWT-SVD-D watermark (wavelet= db6, level=3, ¢ = 0.01).

08+ b

07F -

Correlation
o
”n
T
1

0 1 XL 1 1 L 1 1 1 1
0 20 40 60 80 100 120 140 160 180 200
Watermark Seed

Figure 12: Detection of owner’s watermark in the image (seed=100 among 200 random

watermarks). DWT-SVD-D watermark (wavelet= db6, level=3, e = 0.01).

4-23

References

[1] R. Dugad, Krishna Rataconda and Narendra Ahuja, A New Wavelet Based Scheme for

Watermarking Images , University of Illinois at Urbana-Champain.

[2] Hisai Inoue, Akio Miyazaki, Akihiro Yamamoto and Takashi Katsura, A Digital Wa-
termark Based on the Wavelet Transform and its Robustness in Image Compression ,

Matsushita Electric Industrial Co. Ltd, Kyushu University.

(3] J. Fridrich, Robust Digital Watermarking Based on Key-Dependent Basis Functions,
The 2nd Information Hiding Workshop in Portland, Oregon, April 15-17, 1998.

[4] J. Fridrich, Combining Low-frequency and Spread Spectrum Watermarking, Proc. SPIE
Int. Symposium on Optical Science, Engineering and Instrumentation, San Diego, July

19-24, 1998.

(6] J. Fridrich, Image Watermarking for Tamper Detection, Proc. ICIP’98, Chicago, Octo-
ber 1998.

[6] J. Fridrich, Methods for Detecting Changes in Digital Images, Proc. of the 6th IEEE
International Workshop on Inteligent Signal Processing and Communication Systems

(ISPACS’98), Melbourne, Australia, November 4-6, 1998.

[7] J. Fridrich, A. Baldoza and R. Simard, On Digital Watermarks, Rome Laboratory
Report, 1997.

(8] D. Kundur and D. Hatzinakos, A Robust Digital Image Watermarking Method Using

Wavelet-Based Fusion, to appear in Proc. Int. Conference in Image Processing, 1997.

(9] D. Kundur and D. Hatzinakos, Digital Watermarking Based on Multiresolution Wavelet
Data Fusion, Proc. IEEE, Special Issue on Inteligent Signal Processing, under review,
1-43, 1997.

[10] A. Lutoborski, A. Baldoza and John Vergis, On Wavelet-Based Method of Watermark-
ing Digital Images, Rome Laboratory Report, July 1998.

[11] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, 1998.

[12] M. Misiti, Y. Misiti, G. Oppenheim and J.-M. Poggi, Wavelet Toolboz, The MathWorks
Inc, Natick , Massachusetts, 1996.

4-24

[13] A. Piva, M. Barni, F. Bartolini and V. Cappelini, DCT-Based Watermark Recovering
Without Resorting to the Uncorrupted Original Image, Proc. of the IEEE Int. Con-
ference on Image Processing, Santa Barbara, California, October 26-29 1997, vol.1, p.
520-523.

[14] M.D. Swanson, M. Kobayashi and A.H. Tewfik, Multimedia Data Embedding and Wa-
termarking Technologies, Invited Paper, to appear in the Proc. of the IEEE, 1998.

[15] M.D. Swanson, M. Kobayashi and A.H. Tewfik, Robust Data Hiding for Images, Proc.
of the IEEE Digital Signal Processing Workshop, pp. 37-40, Loen, Norway, September
1996.

[16] M.D. Swanson, M. Kobayashi and A.H. Tewfik, Transparent Robust Image Watermark-
ing, Proc. IEEE Int. Conf. on Image Processing, vol.3,pp. 211-214,1996.

[17] B. Tao and B. Dickinson, Adaptive Watermarking in the DCT Domain, Proc. IEEE
Int. Conf. on Acoustics, Speach and Signal Processing, Munich, Germany, April 21-24,
1997.

(18] A.H. Tewfik, M.D. Swanson, B. Zhu, K. Hamdy and L. Boney, Transparent Robust
Watermarking for Images and Audio, IEEE Trans. on Signal Proc., 1996.

[19] M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software, AK Peters,
Wellesley, Massachusetts, 1994.

[20] X.-G. Xia, C. Boncelet and G. Arce, A Multiresolution Watermark for Digital Images,
Proc. of the ICIP, vol.1, pp.548-551, Santa Barbara, California, October 1997.

[21] Zixiang Xiong, Wengwu Zhu and Ya-Quin Zhang, Multiresolution Watermarking for
Images and Video: A Uniform Approach.

4-25

9 Appendix. MATLAB Programs

dwtpmark

function [Y,cA_wat]=dwtpmark(input,seed,eps,wavelet,level)

h
h
[/
h
/

h
h
h
h

==

h
h
pA

A

File: dwtpmark.m

Function dwtprmark applies a watermark to image ’input’
and produces the watermarked image Y and a matrix of
watermarked wavelet approximation coefficients cA_wat.

It displays Figure(1)=input,Figure(2)=watermarked image

Sample MATLAB command: [Y,cA_wat]=dwtpmark(’len256’,0,0.03,’db6’,3)

the matrix of wavelet coefficients is projected onto a rank-one

direction, projection modified with norm of wavelet coefficients preserved
Parameters:

input image to be watermarked, bmp format assumed

seed PRNG seed to generate the projection direction

eps strength of the watermark, O<eps<1,use eps<=0.03
wavelet wavelet class used in DWT

level level of DWT at which watermark is applied

Created by: Dr. Adam Lutoborski, Syracuse University

Date last modified: November 11, 1999

Read the input image, range [0,255],and its colormap

[X,map]=bmpread(input); figure(1);imshow(X,map);

h

Perform wavelet decomposition

(C,S] = wavedec2(X,level,wavelet); cA=appcoef2(C,S,wavelet,level);

[M,N]=size(cA);

%set the seed for PRNG to seed

rand(’seed’,seed);

%orthogonal decomposition of approximation

%coefficients cA

4-26

d=rand (M, 1) *rand (1,N) ; ncA=norm(cA,’fro’); nd=norm(d,’fro’);
ncA_d=abs (trace(cA’*d))/nd; nwA=(1l-eps)*ncA_d+eps*ncA;
cA_d=(trace(cA’*d)/(nd"2))*d;
delta=sqrt((ncA~2-nwA~2)/(ncA~2-ncA_d"2));
cA_wat=(1-delta-eps*(1-ncA/ncA_d))*cA_d+delta*ch;

% constructing watermarked image from

% watermarked coefficients cA_wat
cA_tilda=reshape(cA_wat,1,S(1,1)%5(1,2));
C(1,1:5(1,1)%S(1,2))=cA_tilda;

Y=waverec2(C,S,wavelet) ;

bmpwrite(Y,map, ’water.bmp’);

figure(2) ; imshow(Y,map);

detectp

function [corr_coef,corr_im,corr_DCTcoef,corr_DCTim]=
detectp(input,original,seed,eps,wavelet,level)

% function detects the presence of the wavelet based, key dependent
% watermark in the image ’input’ using the original image ’original’
% and the secret key generated by seed.

h Dr Adam Lutoborski, Syracuse University

% Date 7 September 1999

% reading in the data

[Z,map]=bmpread (input); [X,map]=bmpread(original);

% computing watermaked wavelet coefficients cA_wat for original image

[Y,cA_wat]=dwtpmark(original,seed,eps,wavelet,level);

% computing wavelet approximation coefficients cA_input

4-27

% for input image
[C,S]=wavedec2(Z,level,wavelet);

cA_input=appcoef2(C,S,wavelet,level);

% computing wavelet approximation coefficients cA
% for original image.

[C,S]=wavedec2(X,level,wavelet); cA=appcoef2(C,S,wavelet,level);

% comparing the coefficient watermark: cA_wat-cA with
% the coefficients of input-original: cA_input-cA
v=cA_wat-cA; watv=cA_input-ci;

corr_coef=abs(trace(v’*watv))/(norm(v,’fro’)*norm(watv,’fro’));

disp(sprintf (’ corr_coef=Y6.3f’,corr_coef))

% comparing the dct of the coefficient watermark with

% the dct of the coefficients of input-original

DCTv=dct2(cA_wat~cA); DCTwatv=dct2(cA_input-cA);
DCTv=DCTv(1:min(32,max(size(DCTv))),1:min(32,max(size(DCTv))));
DCTwatv=DCTwatv(l:min(32,max(size(DCTwatv))),1:min(32,max(size(DCTwatv))));
DCTv(1,1)=0; DCTwatv(1,1)=0;

corr_DCTcoef=abs (trace (DCTv’*DCTwatv))/(norm(DCTv, *fro’)*norm(DCTwatv, *fro’));

% comparing the image watermark Y-X with Z-X
n=Y-X; tm=2Z-X;
corr_im=abs(trace(m’*tm))/(norm(m,’fro’)*norm(tm, ’fro’));

disp(sprintf(’corr_im =%6.3f’,corr_im))

% comparing the dct of the image watermark with
% dct of input-original

DCTm=dct2(Y-X); DCTtm=dct2(Z-X); DCTm=DCTm(1:32,1:32);

4-28

DCTtm=DCTtm(1:32,1:32); DCTm(1,1)=0; DCTtm(1,1)=0;
corr_DCTim=abs(trace(DCTm’*DCTtm))/(norm(DCTm,’fro’)*norm(DCTtm,’fro’));

PlotRandomCorrP

function plotRandomCorrP(original,eps, wavelet, level, seed,

MaxSeed) ;

h

% Plotting Correlations Between Random Watermarks

% Determines empirically the threshold to which to set the watermark detector.
% Uses the Wavelet-Based Watermark Detector developed by

% Dr. Adam Lutoborski, Syracuse University

% Arnold C. Baldoza, 2Lt, Air Force Research Laboratory/IFEC

% version 1.0

% 22 June 1998

A

% Parameters

% original Image to be Watermarked and Detected on

% wavelet Wavelet class to use in watermarking and detection

% level Level of Wavelet decomposition

% seed PRNG seed to genmerate the watermark patterns

% MaxSeed Max PRNG seed to generate the random watermark patterns
%

corr_c=zeros (MaxSeed, 1) ; % correlation stored in vector corr
corr_i=zeros(MaxSeed,1); % correlation stored in vector corr

corr_dc=zeros(MaxSeed,1); % correlation stored in vector corr

corr_di=zeros(MaxSeed,1); % correlation stored in vector corr

[Y,watCA2] =dwtpmark (original,seed,eps,wavelet,level);

[Z,map]l=bmpread(’water’); bmpwrite(Z,map,’test’);

S

= 1; for i=1:MaxSeed
disp([’SEED = ’ int2str(i) 1);

[corr_coef,corr_im,corr_DCTcoef,corr_DCTim]}=...

4-29

detectp(’test’,original,s,eps,wavelet,level);

corr_c(s) = corr_coef;

corr_i(s) = corr_im;

corr_dc(s) corr_DCTcoef;

corr_di(s) = corr_DCTim;
s =8+1;

end

figure(3); plot(abs(corr_c)); title (’Thresholding dwtpmark: Wavelet

Coefficients’); xlabel(’Watermark Seed’); ylabel(’Correlation’);

figure(4); plot(abs(corr_i)); title (’Thresholding dwtpmark: Image
’); xlabel(’Watermark Seed’); ylabel(’Correlation’);

figure(5); plot(abs(corr_dc)); title (’Thresholding
dwtpmark (DCT(Wavelet Coefficients))’); xlabel (’Watermark Seed’);

ylabel(’Correlation’);

figure(6); plot(abs(corr_di)); title (’Thresholding dwtpmark
(DCT(Image Difference))’); xlabel(’Watermark Seed’);

ylabel(’Correlation’) ;

dwtsvdmark

function [Y,cA_wat]=dwtsvdmark(input,seed,eps,wavelet,level)

% File: dwtsvdmark.m

% Function dwtsvdmark applies a watermark to image ’input’

% and produces the watermarked image Y and a matrix of

% watermarked wavelet approximation coefficients cA_wat.

% It displays Figure(1l)=input,Figure(2)=watermarked image

% Sample MATLAB command: [Y,cA_wat]=dwtsvdmark(’len256’,0,0.01,’db6’,3)

4-30

% Parameters:

% input image to be watermarked, bmp format assumed

% seed PRNG seed to generate the rotations of orthogonal matrices in SVD
% eps strength of the watermark, O<eps<i,use eps<=0.01

% wavelet wavelet class used in DWT

% level level of DWT at which watermark is applied

% Created by: Dr. Adam Lutoborski, Syracuse University
% Date last modified: August 28, 1999

% Read the input image, range [0,255],and its colormap
[X,map]=inread(input,’bmp’); figure(1);imshow(X,map);
% Perform wavelet decomposition

[C,S] = wavedec2(X,level,wavelet); cA=appcoef2(C,S,vavelet,level);

M,N]=size(cA); k=min([M,N]); rand(’seed’,seed);
%SVD and its watermaking modification

[U,Sigma,V]=svd(ch);

Ywatermarking modification of the SVD of cA

0_U=eye (M) +eps*(rand (M)-0.5); [q_U,r_Ul=qr(0_U,0);
0_U=q_Uxdiag(sign(diag(r_U))); 0_V=eye(N)+eps*(rand(N)-0.5);
[q_V,r_V]=qr(0_V,0); 0_V=q_Vxdiag(sign(diag(q.V)));

cA_wat=0_UxUxSigma*V’*0_V’;
% constructing watermarked image from watermarked coefficients cA_tilda
cA_tilda=reshape(cA_wat,1,5(1,1)*S(1,2)); C(1,1:5(1,1)*s(1,2)) =

cA_tilda; Y=waverec2(C,S,wavelet);

%figure(5); imshow(Y,map);
imwrite(Y,map,’water.bmp’, ’bmp’); figure(2) ; imshow(Y,map);

detectsvd

function [corr_coef,corr_im,corr_DCTcoef,corr_DCTim]=
detectsvd(input,original,seed,eps,wavelet,level)

% function detects the presence of the wavelet based, key dependent
% watermark in the image ’input’ using the original image ’original’
% and the secret key generated by seed.

% Dr Adam Lutoborski, Syracuse University

% Date 7 September 1999

% reading in the data

(Z,map]l=bmpread (input); [X,map]=bmpread(original);

% computing watermaked wavelet coefficients cA_wat for original image

[Y,cA_wat]=dwtsvdmark(original,seed,eps,wavelet,level);

% computing wavelet approximation coefficients cA_input
% for input image
[C,S]=wavedec2(Z,level ,wavelet);

cA_input=appcoef2(C,S,wavelet,level);

% computing wavelet approximation coefficients cA
p g PP
% for original image.
g g

[C,S]=wavedec2(X,level,wavelet); cA=appcoef2(C,S,wavelet,level);

% comparing the coefficient watermark: cA_wat-cA with
% the coefficients of input-original: cA_input-cA
v=cA_wat-cA; watv=cA_input-cA;

corr_coef=abs(trace(v’*watv))/(norm(v,’fro’)*norm(watv,’fro?’));
disp(sprintf (’ corr_coef=Y6.3f’ ,corr_coef))

% comparing the dct of the coefficient watermark with

% the dct of the coefficients of input-original

4-32

DCTv=dct2(cA_wat-cA) ; DCTwatv=dct2(cA_input-cA);

DCTv=DCTv (1:min(32,max(size(DCTv))),1:min(32,max(size(DCTv))));
DCTwatv=DCTwatv(1:min(32,max(size(DCTwatv))),1:min(32,max(size(DCTwatv))));
DCTv(1,1)=0; DCTwatv(1,1)=0;

corr_DCTcoef=abs (trace(DCTv’*DCTwatv))/ (norm(DCTv, ’fro’) *norm(DCTwatv, fro’));

% comparing the image watermark Y-X with Z-X
m=Y-X; tm=Z-X;
corr_im=abs(trace(m’*tm))/(norm(m, ’fro’)*norm(tm, *fro’));

disp(sprintf (’corr_im =%6.3f’,corr_im))

% comparing the dct of the image watermark with

% dct of input-original

DCTm=dct2(Y-X); DCTtm=dct2(Z-X); DCTm=DCTm(1:32,1:32);
DCTtm=DCTtm(1:32,1:32); DCTm(1,1)=0; DCTtm(1,1)=0;

corr_DCTim=abs (trace (DCTm’ *DCTtm)) / (norm(DCTm, ’fro’) *norm(DCTtm, *fro’));

PlotRandomCorrSVD

function plotRandomCorrSVD(original,eps, wavelet, level, seed,
MaxSeed) ;

%

% Plotting Correlations Between Random Watermarks

% Determines empirically the threshold to which to set the watermark detector.
% Uses the Wavelet-Based Watermark Detector developed by

% Dr. Adam Lutoborski, Syracuse University

% Arnold C. Baldoza, 2Lt, Air Force Research Laboratory/IFEC
% version 1.0

% 22 June 1998

%

% Parameters

4-33

% original Image to be Watermarked and Detected on
g g

% wavelet Wavelet class to use in watermarking and detection

% level Level of Wavelet decomposition

% seed PRNG seed to generate the watermark patterns

% MaxSeed Max PRNG seed to generate the random watermark patterns
h

corr_c=zeros (MaxSeed,1); % correlation stored in vector corr
corr_i=zeros(MaxSeed,1); % correlation stored in vector corr

corr_dc=zeros(MaxSeed,1); 7 correlation stored in vector corr

corr_di=zeros(MaxSeed,1); % correlation stored in vector corr

[Y,watCA2]=dwtsvdmark(original,seed,eps,wavelet,level);

[Z,map]=bmpread(’water’); bmpwrite(Z,map,’test’);

s = 1; for i=1:MaxSeed
disp([’SEED = ’ int2str(i) 1);
[corr_coef,corr_im,corr_DCTcoef,corr_DCTim]=...

detectsvd(’test’,original,s,eps,wavelet,level);

corr_c(s) = corr_coef;

corr_i(s) = corr_im;

corr_dc(s) = corr_DCTcoef;

corr_di(s) corr_DCTim;
s =8+ 1;

end

figure(3); plot(abs(corr_c)); title (’Thresholding dwtpmark:Wavelet

Coefficients’); xlabel(’Watermark Seed’); ylabel(’Correlation’);

figﬁre(4); plot(abs(corr_i)); title (’Thresholding dwtpmark(Image

Difference)’); xlabel(’Watermark Seed’); ylabel(’Correlation’);

4-34

figure(5); plot(abs(corr_dc)); title (’Thresholding

dwtpmark (DCT (Wavelet Coefficients))’); xlabel(’Watermark Seed’);

ylabel (’Correlation’);

figure(6); plot(abs(corr_di)); title (’Thresholding dwtpmark

(DCT(Image Difference))’); xlabel (’Watermark Seed’);

ylabel(’Correlation’);

dwtsvddmark

function [Y,cA_wat]=dwtsvddmark(input,seed,eps,wavelet,level)

%
h
h
h
h
%
%
h
h
%
%
%
%
h
h
h

h

File: dwtsvddmark.m

Function dwtsvddmark applies a watermark to image ’input’

and produces the watermarked image Y and a matrix of

watermarked wavelet approximation coefficients cA_wat.

It displays Figure(1)=input,Figure(2)=watermarked image

Sample MATLAB command: [Y,cA_wat]=dwtsvddmark(’len256’,0,0.01,’db6’,3)

the SVD of the matrix of wavelet coefficients is modified

by multiplicative modification of singular values with norm preserved
Parameters:

input image to be watermarked, bmp format assumed

seed PRNG seed to generate the projection direction

eps strength of the watermark, O<eps,use eps<=0.01
wavelet wavelet class used in DWT

level level of DWT at which watermark is applied

Created by: Dr. Adam Lutoborski, Syracuse University

Date last modified: November 11, 1999

Read the input image, range [0,255],and its colormap

[X,map]=imread(input, ’bmp’);

figure(1) ; imshow(X,map);

h

Perform wavelet decomposition

4-35

[C,S] = wavedec2(X,level,wavelet); cA=appcoef2(C,S,wavelet,level);
[M,N]=size(cA); k=min([M,N]); cAmin=min(min(cA)); cAmax=max(max(ci));
rand(’seed’,seed) ;

%#SVD and its watermaking modification

[U,Sigma,V]=svd(cA); sig=diag(Sigma);

%orthogonal perturbation of the diagonal in SVD and scaling by kap
R=eye (k)+eps*(rand(k)-0.5); [q_R,r_Rl=qr(R,0);
R=q_Rxdiag(sign(diag(q_R))); sig_wat=R*sig;

cA_wat=Uxdiag(sig_wat)*V’;

% constructing watermarked image from watermarked coefficients cA_tilda
cA_tilda=reshape(cA_wat,1,5(1,1)*S(1,2)); €(1,1:5(1,1)%5(1,2)) =
cA_tilda; Y=waverec2(C,S,wavelet); imwrite(Y,map,’water.bmp’,’bmp’);

figure(2) ; imshow(Y,map);

detectsvdd

function [corr_coef,corr_im,corr_DCTcoef,corr_DCTim]l=
detectsvdd(input,original,seed,eps,wavelet,level)

% function detects the presence of the wavelet based, key dependent
% watermark in the image ’input’ using the original image ’original’
% and the secret key generated by seed.

% Dr Adam Lutoborski, Syracuse University

% Date 10 October 1999

% reading in the data

[Z,map]l=bmpread(input); [X,map]=bmpread(original);

% computing watermaked wavelet coefficients cA_wat for original image

[Y,cA_wat]=dwtsvddmark (original,seed,eps,wavelet,level);

% computing wavelet approximation coefficients cA_input

% for input image

4-36

[C,S8]=wavedec2(Z,level ,wavelet) ;

cA_input=appcoef2(C,S,wavelet,level);

% computing wavelet approximation coefficients cA
% for original image.

[C,S]=wavedec2(X,level ,wavelet); cA=appcoef2(C,S,vavelet,level);

% comparing the coefficient watermark: cA_wat-cA with

% the coefficients of input-original: cA_input-cA

v=cA_wat-cA; watv=cA_input-cA;

corr_coef=abs (trace(v’*watv))/(norm(v, ’fro’)*norm(watv, fro’));
disp(sprintf (’corr_coef=%6.3f’,corr_coef))

% comparing the dct of the coefficient watermark with

% the dct of the coefficients of input-original

DCTv=dct2(cA_wat-cA); DCTwatv=dct2(cA_input-cA);
DCTv=DCTv(1:nin(32,max(size(DCTv))),1:min(32,max(size(DCTv))));
DCTwatv=DCTwatv(1:min(32,max(size(DCTwatv))),1:min(32,max(size(DCTwatv))));
DCTv(1,1)=0; DCTwatv(1,1)=0;

corr_DCTcoef=abs (trace(DCTv’*DCTwatv))/ (norm(DCTv, ’fro’) *norm(DCTwatv, *fro’));

% comparing the image watermark Y-X with Z-X
m=Y-X; tm=Z-X;
corr_im=abs (trace(m’*tm))/(norm(m, ’fro’) *norm(tm, fro’));

disp(sprintf(’corr_im =%6.3f’,corr_im))

% comparing the dct of the image watermark with

% dct of input-original

DCTm=dct2(Y-X); DCTtm=dct2(Z-X); DCTm=DCTm(1:32,1:32);
DCT+tm=DCTtm(1:32,1:32); DCTm(1,1)=0; DCTtm(1,1)=0;

corr_DCTim=abs (trace (DCTm’ *DCTtm))/ (norm(DCTm, >fro’) *norm(DCTtm, *fro’));

PlotRandomCorrSVDd

function plotRandomCorrSVDd(original,eps, wavelet, level, seed,

MaxSeed) ;

h
h
h
h
h
h
h

% 11 November 1999

%

% Parameters

% original Image to be Watermarked and Detected on

% wavelet Wavelet class to use in watermarking and detection
% level Level of Wavelet decomposition

% seed PRNG seed to generate the watermark patterns

% MaxSeed Max PRNG seed to generate the random watermark patterns
%

corr_c=zeros(MaxSeed,1); % correlation stored in vector corr
corr_i=zeros(MaxSeed,1); % correlation stored in vector corr
corr_dc=zeros(MaxSeed,1); % correlation stored in vector corr
corr_di=zeros(MaxSeed,1); % correlation stored in vector corr

Plotting Correlations Between Random Watermarks
Determines empirically the threshold to which to set the
Uses the Wavelet-Based Watermark Detector developed by

Dr. Adam Lutoborski, Syracuse University

watermark detector.

Arnold C. Baldoza, 2Lt, Air Force Research Laboratory/IFEC

version 1.0

[Y,watCA2]=dwtsvddmark(original,seed,eps,wavelet,level);

[Z,map]=bmpread(’water’); bmpwrite(Z,map,’test’);

s

= 1; for i=1:MaxSeed

disp([’SEED = ’ int2str(i)]);

[corr_coef,corr_im,corr_DCTcoef,corr_DCTim]=...

4-38

detectsvdd(’test’,original,s,eps,wavelet,level);

corr_c(s) = corr_coef;

corr_i(s) = corr_im;

corr_dc(s) = corr_DCTcoef;

corr_di(s) = corr_DCTim;
s =8+ 1;

end

figure(3); plot(abs(corr_c)); title (’Thresholding
dwtsvddmark:Wavelet Coefficients’); xlabel(’Watermark Seed’);

ylabel(’Correlation’);

figure(4); plot(abs(corr_i)); title (’Thresholding dwtsvddmark(Image

Difference)’); xlabel(’Watermark Seed’); ylabel(’Correlation’);

figure(5); plot(abs(corr_dc)); title (’Thresholding
dwtsvddmark(DCT(Wavelet Coefficients))’); xlabel(’Watermark Seed’);

ylabel (’Correlation’);
figure(6); plot(abs(corr_di)); title (’Thresholding dwtsvddmark

(DCT(Image Difference))’); xlabel(’Watermark Seed’);

ylabel (’Correlation’);

4-39

IMPLEMENTATION OF PETRI-NETS BASED MULTI-SOURCE ATTACK
DETECTION MODEL

Brajendra Panda
Associate Professor
Department of Computer Science

University of North Dakota
P.O. Box 9015
Grand Forks, ND 58202-9015

Final Report
Sor

Summer Research Extension Program
Rome Research Site

Sponsored by:

Air Force Office of Scientific Research
Bolling Air Force Base
Washington, D.C.
and
Rome Research Site

Air Force Research Laboratory
Rome, NY 13440

February 2000

5-1

Implementation of Petri-Nets Based Multi-Source Attack Detection Model

Brajendra Panda
Associate Professor
Department of Computer Science
University of North Dakota

Abstract

The Information Assurance (IA) program was started by the US Air Force (USAF) with a view to protect
USAF'’s information systems, to detect any information attacks on these resources, and to react to situations that
can interrupt operations of such systems. Intrusion detection plays a very critical role in this process. Although
existing intrusion detection systems can easily detect copycat types of attacks, they fail to identify prudent
coordinated attacks originating from multiple sources. Therefore, development of a system that can quickly and
accurately recognize multi-source attacks is extremely essential for survival of information systems. During my
research at the Rome Research Site in summer of 1998, I had proposed a conceptual model to analyze sensor data
Jfor detection of coordinated attacks on computer systems [Pand98]. These attacks originate from multiple sites and
therefore named as multi-source attacks. Petri-nets were used to detect such attacks. We have implemented the

model using C and Visual C++. In this paper, we provide the implementation particulars of the project.

Implementation of Petri-Nets Based Multi-Source Attack Detection Model

Brajendra Panda

1. Introduction

The last decade of the last millennium has witnessed incredible revolution in computer technology. The
most popular event has been the evolution of the Internet, which has become the indispensable media for almost
every computer user for collection and dissemination of information. However, this remarkable tool also provides
malicious users the opportunity to illegally access others computer systems. The objective of an attacker could
range from causing momentary disorder in the organizational activities to complete destruction of the opponent’s
information system. Defensive Information Warfare (DIW) plays a vital role in the protection of computer systems
from unauthorized access. The US Air Force’s Information Assurance (IA) program is heavily involved in research
and development of dependable systems for its command, control, communications, and computer (C*) systems
[Metc97].

A lot of research, including strict access control mechanisms, has been performed to protect systems from
unauthorized users. Some of the related research done by the investigator can be found in [Pand94], [Pan95a], and
[Pan95b]. Ammann et al. [Amm97] and Graubart et al [Grau96] have discussed some of these issues with regard to
information warfare environment. However, these techniques are not sufficient to provide absolute protection from
information attacks. When protection mechanisms for these systems fail, immediate detection of an intrusion, and
fast and accurate recovery of affected systems become highly important [Pand99].

A survey of existing intrusion detection mechanisms is presented in [Lunt93]. In [Goan99] a method is
presented on collection and evaluation of intrusion evidence. Durst et.al. have presented an approach to evaluate
intrusion detection systems in [Durs99]. Although existing intrusion detection systems can easily detect copycat
types of attacks, they fail to identify prudent coordinated attacks originating from multiple sources. Therefore,
development of a system that can quickly and accurately recognize multi-source attacks is exiremely essential for
survival of information systems. In this paper, we discuss implementation of a model developed in [Pand98] for
analysis of sensor data to determine attacks that are launched from several distributed sites.

The rest of the report is organized as follows. In section 2, we specify the motivation for this research. A
brief discussion of the model is presented in section 3. Section 4 offers implementation facts of the model. Section

5 discusses results and conclusion of the project. The appendix section of this paper provides the source code.

2. Motivation

A defensive information warfare decision support system called Extensible Prototype for Information
Command and control (EPIC) is currently under development at Rome Research Site. This system is being
designed to monitor system and network parameters to identify if an attack occurs and when it occurs to suggest

necessary actions to be taken. Data obtained from various sensors at this site are passed through an expert system

5-3

called G2, which then stores essential data in a database. Examples of information collected and stored in the
database include user ids and passwords, login time, logout time, remote system id (from where access was made),
id of the system that was accessed, commands executed, etc. If any suspicious activity by a user is found, the expert
system will alert the security administrators of the event. Such activities are usually determined by examining
various commands executed by users. Using this system it would be easy to detect copycat types of attacks
launched by a single attacker. However, any coordinated attacks organized by a group of sophisticated attackers
will be impossible to detect without an efficient, optimized, and refined process that requires automated correlation
of data obtained from various sensors. This issue motivated us to develop a conceptual model based on Petri-nets
that monitors commands of all users in the system and correlates them in order to find any attack patterns. The

model is briefly described in the next section. Interested readers may refer to [Pand98] for further details.

3. The Model

As per [Pand98], Figure 1 below depicts an attack pattern, which requires commands C, and C,, executed
in any order, and are followed by command C,. Then commands Cs, C4 and C, need to be executed without any
particular ordering among them. However, command C, must be executed before execution of command C,.
Finally, execution of command C; would complete the attack. Using the model developed in [Pand98], this attack
pattern can then be transformed to a Petri-Net as shown in Figure 2. A background on Petri-Nets and the process of

developing the structure is discussed in [Pand98]. A detailed discussion on Petri-Nets can be found in [Mura89].

©
oS

Figure 1: A Graph Representing Attack

4. Implementation Facts

In this project, the Petri-Net attack detection model described in previous section is implemented using ‘C’
language. Visual C++ is used to offer a graphical interface. Following is the brief description of the files used:
Attack Pattern Files: The attack pattern is represented in a file format using ‘p’s (place) and ‘t’s (transition). For
example t,, ps, Pg, Ps, t, indicates that the places ps, p, p, can not be enabled (setting to 1) until and unless t, is fired.
Similarly t, can not be fired, if any one of the places is not yet enabled. In general, before firing a transition all its
immediate predecessor places has to be enabled. Note that all the immediate predecessor places need not be in the
same line in a file. Similarly before enabling a place, its immediate predecessor transactions has to be fired. The
list of immediate predecessors for a place or transition can be obtained from these attack pattern files. If there is
more than one place in a line, they are stored in increasing value of the place number. Each place in the Petri-Net
model corresponds to the command number. These files have .dat extension.
Input Data File: The sequences of command numbers are stored in this (inp_data) file.
Command User Information File: The user id is stored against the command number (issued by the same user) in
this (com_user) file.
Output Files: Compl patts contains the list of completely attacked patterns detected and similarly devel patts
contains developing patterns list. Sequence of commands forming a partial attack pattern (at least half but not full)
is treated as developing pattern). Finally the commands and users ids associated with these attack patterns are
stored in files of the format patt_. For example, pattern] information is stored in patt1.

There functions used to detect distributed attacks are described briefly below:
file_max_p_t(): This functioﬁ takes the file number as a parameter and returns the maximum place number and
transition number found in that file. Typically each file contains an attack pattern. The given file is scanned one
line at a time until the last line is reached, which contains the maximum place number and maximum transition
number. Note that if there is more than one place in a line they are stored in increasing value of the place number
and it is obvious that the transition with the maximum value is found in the last line,
enable_place(): This function takes the place number and file number as parameters and determines whether that
place can be enabled or not. The function determines the list of transactions that should be fired before this place
can be enabled for a particular attack pattern. (Attack pattern stored in the file is used for detection purpose). If any
of the transitions in the list is not yet fired the function returns 0 indicating the place under consideration can not be
enabled and returns 1 if all the transitions in the list are fired.
check_trans_list(): When a place is enabled, it has to be checked whether enabling of this place triggers firing of
any transition(s). check_trans_list() function returns the list of transitions that may be fired on accounting of
enabling a place. This function obviously takes place number and file number (for attack pattern) as parameters and
returns the list of transitions in a global integer array. ‘
enable_trans(): This function takes the transition number and file number as parameters and returns 0 if the

transition can not be fired. The function obtains the list of places that have to be enabled for firing this particular

transition. If all the places are enabled it returns the transition number and if any of the places are not yet enabled it
returns 0.

print_user_info(): This function reads the command number and determines the user id from user_info file and
writes the output (command number and user id) into a file determined by the second parameter.

main(): The main function opens all the input and output files. It initializes the various variables and integer arrays.
Then it reads the command numbers sequentially from the file. For each command read it checks whether the place
can be enabled for a particular attack pattern using enable_place() function. If the place can be enabled, it calls
check_trans_list(), to determine the list of transitions that has to checked for triggering. For each transition in the
list, enable_trans() function is called to see if a particular transition can be triggered. The whole process mentioned
above is repeated for each attack pattern. Finally output is written to appropriate files. The Visual C++ program

reads from these files and displays the results in graphical form.

= Petiinet Model For Distsibuted Attack

Figure 3: Output Showing Developing Attack Patterns

5. Results and Conclusion

During the execution of the program, many sets of command sequences were passed as input and results
were verified. It must be noted that the program was run using imaginary attack patterns. In all cases of the
program execution, the model was able to detect both completed attack patterns as well as developing patterns. A

pattern was considered developing when at least 50% of its command sequences starting from the beginning of the

5-6

Petri-Net were executed. Results of two different executions are included in figures 3 and 4. Figure 3 shows an
output where the sequence of commands form four developing patterns and no completed patterns. Another output
with four completed attack patterns and two developing patterns are illustrated in Figure 4.

Our program used six imaginary attack patterns. Each output was in full conformity with expected results.
The source code of the program is provided in the appendix. With minor modification, the program can be used to

detect any number of attack patterns.

Figure 4: Output Showing Both Developing and Completed Attack Patterns

Acknowledgments
I acknowledge and thank Mr. Joseph Giordano of Rome Research Site, Air Force Research Laboratory for
his support of during this research. I am also thankful to Mr. Rajesh Yalamanchili for working tirelessly to finish up

implementation of this project.

References

[Amm97] P. Ammann, S. Jajodia, C. D. McCollum, and B. Blaustein, “Surviving Information Warfare Attacks on
Databases”, In Proceedings of the 1997 IEEE Symposium on Security and Privacy, p.164-174, Oakland,
CA, May 1997.

5-7

[Durs99]

[Goan99]

[Grau96]

[Lunt93]

[Metc97]

[Mura89]

[Pand94]

[Pan95a]

[Pan95b]

[Pand98]

[Pand99]

Appendix

R. Durst, et.al, “Testing and Evaluating Computer Intrusion Detection Systems”, In Communications of
the ACM, Vol. 42, No. 7, p. 53-61,July 1999.

T. Goan, “A Cop on the Beat: Collecting and Appraising Intrusion Evidence”, In Communications of the
ACM, Vol. 42, No. 7, p. 46-52, July 1999,

R. Graubart, L. Schlipper, and C. McCollum, “Defending Database Management Systems Against
Information Warfare Attacks”, Technical report, The MITRE Corporation, 1996.

T. F. Lunt, “A Survey of Intrusion Detection Techniques”, Computers & Security, Vol. 12, No. 4, p.
405-418, June 1993.

Therese R. Metcalf, “Computer Security Assistance Program For The Twenty-First Century (CSAP21)
Functional Requirements — Draft”, Technical Report, The MITRE Corporation, Bedford, MA, December
1997.

Tadao Murata, “Petri Nets: Properties, Analysis and Applications”, In Proceedings of the IEEE, Vol. 77,
No. 4, p. 541-580, April 1989.

B. Panda, W. Perrizo, and R. Haraty, “Secure Transaction Management and Query Processing in MLS
Database Systems”, In Proceedings of 1994 ACM Symposium on Applied Computing, pp. 363-368,
Phoenix, AZ.

B. Panda and W. Perrizo, “Query Execution in PRISM and SeaView: A Cost Analysis”, In Proceedings
of 1995 ACM Symposium on Applied Computing, San Jose, CA.

B. Panda and W. Perrizo, “Maintaining Surrogate Data for Query Acceleration in Multilevel Secure
Database Systems”, In Lecture Notes in Computer Science, No. 1006, Information Systems and Data
Management, Editor: Subhash Bhalla, Springer-Verlag, November 1995.

B. Panda, “A Model to Analyze Sensor Data For Detection of Multi-Source Attacks”, Final Report,
AFOSR Summer Faculty Research Program, AFRL, Rome Research Site, Rome, August 1998.

B. Panda and Joseph Giordano, “Defensive Information Warfare”, Guest Editors’ Article, In
Communications of the ACM, Vol. 42, No. 7, p. 31-32, July 1999.

/* This program reads a set of numbers (that corresponds to command numbers) sequentially and checks to see if
they are producing an attack patterns. Attack patterns stored in files is read by the program and used for detection
purposes. Whenever half the number of commands to complete an attack pattern are read (executed), it is
considered as developing pattern and is displayed. When all the commands needed are read (executed) it is
displayed as Completed attack pattern. */

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#define max_len 40 // Maximum length of any line in input files

// storing attack patterns

#idefine att_patterns 6 // Number of attack patterns
#define max_places 20 // Max. number of places in any attack pattern
#define max_transitions 20 // Max. number of transitions in any attack pattern

5-8

int file_max_p_t(int file_num);

int enable_place (int a, int fil_num);
void check_trans_list (int b, int fi_num);
int enable_trans (int c, int f num);

void print_user_info(int d, int €);

FILE *fptr[att_patterns],*patt_fptr[att_patterns],*com_user_fptr;
int t[att_patterns][max_transitions], p[att_patterns}{max_places];
int max_p_val[att_patterns],max_t val[att_patterns];

int transtn_list{max_transitions];

int main()

FILE *data_fptr, *compl_fptr, *devel_fptr;

int i,j,m,com_num,trans_num,flag1,flag2=0,compl _flag[att_patterns];
int com_seq[att_patterns][max_places],com_seq numf{att_patterns];
int seq_end _flag[att_patterns],developing_flag[att_patterns];

float x;

char out_file[20];

/* The following for loop calls the file_max_p_t function repeatedly,
which inturn determines the maximum place number and maximum transition
number for a particular attack pattern, stored in file format */

for(i=0;i<att_patterns;i++)
file_max_p_t(i);

if ((compl_fptr=fopen("comp!_patts","w"))==NULL)

printf("file compl_patts not found!!"\n");
return 0;

if ((devel fptr=fopen("devel_patts","w"))==NULL)

printf("file devel patts not found!!\n");
return O;

}
if ((com_user_fptr=fopen("com_user","r"))==NULL)
{

printf("file com_user not found!!\n");

return 0;

}

for(i=0;i<att_patterns;i++)
{
sprintf(out_file,"%s%d","patt",(i+1));
if ((patt_fptr[i]=fopen(out_file,"w"))==NULL)

printf("file %s not found!!\n",out_file);
return 0;

}

/* The following for loop initializes the place number values to Zero */

5-9

for(m=0;m<att_patterns;m++)

{
for(i=0;i<max_places;i++)
{
p[m][i]=0;
}
}

/* The following for loop initializes the transition number values to zero */

for(m=0;m<att_patterns;m++)
{
for(i=0;i<max_transitions;i++)

{
t{m][i]=0;

}

for(i=0;i<att_patterns;i++)
{
t[i][0]=1; // First column of transition number matrix is
// setto'l'.
seq end flag[i]=0; //seq_end_flag which indiactes whether a
// particular attack pattern is completed is
// initialized to zero.
com_seq num[i]=0; //com_seq num which gives a count of commands
/I which are read (executed) and match with a
// particular attack pattern
developing_flag[i]=1; // developing_flag which indiactes whether a
// particular attack pattern is half way
// through is initialized to one.
compl_flag[i]=0; // compl_flag which indiactes whether a
// pattern is completed is initialized to '0'

}

/* The file containing sets of numbers (corresponding to commands) is
being opened and read sequentially to see if it is producing any attack
patterns */

if ((data_fptr=fopen("inp_data","r"))==NULL)
printf("file inp_data not found!!\n");
else

{
fscanf(data_fptr,"%d",&com_numy);

while (!feof(data_fptr))
{

/* The following for loop checks whether the command number read from
input file (inp_data) contributes to the formation of any of the attack

patterns */

for(m=0;m<att_patterns;m++)

{

/* The following if condition checks whether the command number read is
less than the maximum value possible in a particular attack pattern,
and the place number of the corresponding number is not yet set and
finally checking if the place can be enabled */
if((com_num<=max_p_val[m])&&(p[m][com_num]==0)&&(enable_place(com_num,m)==1))
{
plm][com_num]=1; // setting the place to '1'
com_seq[m][{com_seq num[m]]}=com_ num; // noting down the
// developing sequence
com_seq num[m]++;
for(i=0;i<max_transitions;i++)
transtn_listi]="\0";

/* The following function returns the list of transactions (in an array,
transtn_list[]) that has to be checked to see if they can be enabled */

check trans_list(com_num,m);

/* The enable_trans() function returns non zero if any transition can be
enabled. This function is called for each element in transtn_list
array */

fOr(j ‘—'O;transtn_list[j] !=v\0|;j -i—i-)
{
trans_num=enable_trans(transtn_list[j],m);
if(trans_num>0)
{

t{m][trans_num]=1; // setting the transition to 'l

/* The following if checks whether an attack patterﬂ is completed and if
it is completed, prints that particular pattern as completed attack
pattern */

if((trans_num==max t valim])&&(compl flag[m]==0))
{
compl_flag[m]=1;
developing_flag[m]=0; // It's no more a developing pattern
fprintf(compl_fptr,"%s%d\n"," Attack Pattern",m+1);

/* The following for loop prints the completed attack pattern */

for(i=0;i<(max_p_val[m]);i++)

{

print_user_info(com_seq[m][i], m); // prints the user info

} // end of if that checks for completed pattern
} // end of if which enables a transition
}// end of for which checks all the possible transitions that canbe // enabled
} // end of if which enables a place
} // end of for
fscanf(data_fptr,"%d",&com_num);

} // end of while which reads the place numbers
/* printing developing patterns */

flag1=0;
for(m=0;m<att_patterns;m++)

{

/* Any pattern which is half through is treated as developing pattern. The
following if loop checks whether it is half way through but not yet
completed and then prints it as developing pattern */

x= (float) max_p_val[m]/2;
if((com_seq_num[m] >= x)&&(developing_flag[m]=—1))

{
fprintf(devel_fptr,"%s%d\n","Attack Pattern",m+1);

for(i=0;i<com_seq_num[m];i++)
{
print_user_info(com_seq[m][i], m); // prints user info

}

} // end of if
} // end of for
/* end of printing developing patterns */

fclose(data_fptr);

} // end of else which indicates that data file is found.
for(i=0;i<att_patterns;i++)
{

fclose(fptr(i]);
fclose(patt_fptr{i]);
J
fclose(compl_fptr);
fclose(devel _fptr);
fclose(com_user_fptr);
return 0;
} // end of main

/* The following function takes the place number and file number (for
attack pattern, please see the note following) as input and determines
whether that place can be enabled or not.

Note: Each attack pattern is stored in a file. For example, attack
pattern 1 is stored in file ptl.dat. The function retrives the
corresponding attack pattern from the file to check if the place
number passed can be enabled. */

int enable_place (int a, int fil_num)

{
int j,flagl;
int set_place,trans_ctr,trans_listimax_transitions],start_trans_num;
char line_p[max_len],place_name[10], *start_trans;

rewind(fptr[fil num]));

/* The trans_list array stores the list of transitions that are
immediately before the place number being checked. The following for
loop declares and initializes the array. */

for(j=0;j<max_t val[fil_num)];j++)

trans_list[j}="\0";
sprintf(place_name,"%c%d%c",'p',a,’,");
fscanf(fptr[fil_num],"%s",line_p); // opening the required attack pattern
trans_ctr=0; // initializing the number of transitions to '0'
flag1=0;

while(!feof(fptr[fil_num])) // reads each line in the file
{
if(strstr(line_p,place_name)!=NULL) // looking for occurence of
// place in the line read
{

flagl=1;
start_trans=strtok(line_p,","); // extracting the transition.

/* The following for loop extracts the transition number */

for(j=0;j<(strlen(start_trans)-1);j-++)
start_trans[j]=start_trans[j+1];
start_trans[j]="\0";
start_trans_num=atoi(start_trans); // converting the number to
// integer
trans_list[trans_ctr]=start_trans_num; // storing in the trans_list
trans_ctr++;
} // end of if which finds the corresponding line with the given place number
fscanf(fptr[fil_num},"%s",line_p);
} // end of while which scans for the lines with the given place
rewind(fptr[fil num]);
set_place=1;
=0;

/* The following while loop traverses the whole list of transitions to see

if they are set. If they are all set to ']’ the place can be enabled */
while(((j==0)||(trans_list[j]!="\0"))& &(flagl==1)&&(set_place==1))
{

if (t[fil_num][trans_list[j]]==0)

{

set_place=0;

}

it
} // end of while loop which checks if the place can be enabled
if ((set_place=1)&&(flagl==1))

return 1;
else

return O;

}

/* The following function takes the place number (that is enabled) and
file number (for attack pattern) as input and returns the list of

5-13

transitions (in an integer array, transtn_list[]) that has to be
checked if they can be enabled. */

void check_trans_list (int b, int fi_num)
{

int k,test_trans num,t_val='t';

char p_name[10],test_trans[10];

char line p_t[max_len];

int trans_ctr=0;

rewind(fptr{fi_num));

for(k=0;k<max_transitions;k++)

transtn_list[k]="\0"; // Initialization
sprintf(p_name,"%c%d%c",'p',b,",);
fscanf(fptr[fi_num],"%s" line_p_t); // reads a line from the file

while(!feof(fptr[fi_num))) // loops until end of file
{

/* The following if checks if the place name is present in the line read.
Note that delimiter has to be included in place name to get the right
result */

if(strstr(line_p_t,p_name)!=NULL)
{
strcpy(test_trans,strrchr(line_p_t,t_val)); //getting the
/[transition
for(k=0;k<(strlen(test_trans)-1);k++)
test_trans{k]=test_trans[k+1];
test_trans[k]="0";
test_trans_num=atoi(test_trans); // getting the number of the
// transition
/* The following while and if constructs checks that the transition number
is not already present in the transtn_list[] before adding a new
transition */

k=0;
while((transtn_list[k]!=test_trans_num)&&(transtn_list[k]!="0"))
{
k++;
}
if(transtn_list[k]'=test_trans_num)
{
transtn_list[trans_ctr]=test_trans num;
trans_ctr++;
}
} // end of if which finds the line with the given place number
fscanf(fptr[fi_num),"%s",line_p t);
} // end of while which scans for the lines with the given place
rewind(fptr[fi_num]);
}

/* The following function reads the transition number and file number(for
attack pattern) and detremines whether that particular transition can

5-14

be enabled. The function return zero if the transition can not be
enabled and if the transition can be enabled, the function returns the
transition number that can be enabled. */

int enable_trans (int ¢, int f num)
{
intt_val="t' k,set_trans,place_num,places_listfmax_places];
int places_ctr=0;
char end_transtn[10],test_transtn[10];
char *strl line_t[max_len];

rewind(fptr[f num]);
for(k=0;k<max_p_val[f num];k++) // Initilaization
places_list[k]="\0";

sprintf(test_transtn,"%c%d",'t',c); // transition needs to be checked
fscanf(fptr[f_num),"%s" line_t); // reads a line from file
while(!feof(fptr[f_num})) // 1oops until the end of file
{

strepy(end_transtn,strrchr(line_t,t_val)); // checks for the last

// transition in the line
if(stremp(end_transtn,test_transtn)==0) // checks if they are same

{

/* The following part collects all the place numbers (before the
transition number that needs to be checked). All these places have to
be enabled for the transition we are checking to be enabled */

strl=strtok(line_t,",");
while(str1!=NULL) // breaking the line into segments
{
if(str1{0]=="p") // looking for places
{
for(k=0;k<(strlen(strl)-1);k++)
strl[k]=str1[k+1];
str1[k}="0";
place_num=atoi(strl); // getting the place number from place

/* The following while and if constructs checks that the place number
is not already present in the places_list[] before adding a new
place number */

k=0;
while((places_list[k]!=place_num)&&(places_list{k]!="0"))
{
kt++;
}
if(places_list[k]!=place num)
{
places_list[places_ctr]=place num;
places_ctr++;
} // end of if which adds a new place into places_list
} // end of if which looks for places in a line
strl=strtok(NULL,",");
} // end of while that scans all the places in a line

5-15

} // end of if which finds an occurence of test_trans at the end of
//a given line

fscanf(fptr[f_num),"%s" line_t);
} // end of while that reads a line from input file at a time
rewind(fptr{f_num));

set_trans=1;
/* The following while and if constructs checks if any of the places are

not enabled. If any of the places is not yet enabled, the transition we
are checking for can not be enabled */

k=0;,
while(places_list[k]!="0")
{
if ((p[f_num][places_list[k]]==0)&&(set_trans==1))
set_trans=0;,
k++;

} // end of while loop which checks if the place can be enabled
if (set_trans==1)

return c; // returns the transition number that can be enabled
else

return 0; // transition can not be enabled

}

/* The following function reads the file number (storing attack pattern)
and returns the maximum place number and maximum transition number
found in integer arrays. (max_p_val[] and max_t_val[]) */

int file_max_p_t(int file_num)

{
int 1t value='t,p_value="p';
char inp_line[max_len],c_inp_line[max_len],max_p[10];
char max_t[10],file_name[20];

sprintf(file_name,"%s%d%s","pt",(file_num-+1),".dat");

if((fptr[file_num]=fopen(file_name,"r"))==NULL) // opening file
printf("file %s could not be opened for reading\n" file_name);
else

fscanf(fptr[file_num)],"%s",inp_line);

while(!feof(fptr[file_num])) //loops until the end of file
{

strecpy(c_inp_line,inp _line);
fscanf{fptr{file_num),"%s",inp_line);

}

rewind(fptr[file_num]);

/* The maximum place number and maximum transition number is obviously
present in the last line of the file. ¢_inp line[], now has the last

5-16

line in the file. */

strepy(max_p,strrchr(c_inp_line,p_value)); //extracting max. place
for(1=0;1<(strlen(max_p)-1);1++)

max_p[l]=max_p[l+1];
max_p[l]=\0";
max_p_val[file_num]=atoi(max_p); // getting max place number
strcpy(max_t,strrchr(c_inp_line,t_value)); // extracting max transition
for(1=0;1<(strlen(max_t)-1);++)

max_t{l]J=max_t[l+1];
max_t[1]="0';
max_t_valffile_ num]=atoi(max_t); // get max transition number

}

return 0;

}

/* The following function takes the command number and file pointer number
(for output to be written) as input parameters. Then it searches the
com_user file to see who isssued that particular command and then
prints the user information along with the command number to output
file using the file pointer number passed */

void print_user_info(int d, int €)
{
int flg1=0;
char user_info[50],c_user_info[50],comm[10];
rewind(com_user_fptr);
sprintf(comm,"%d%c",d,",");
fscanf(com_user_fptr,"%s",user_info); // reading a line from file
while((!feof(com_user_fptr))&&(flg1==0)) // searching the file until
{ // match is found
strepy(c_user_info,user_info);
if(strstr(user_info,comm)!=NULL) // checking for match
{
sprintf(user_info,"%s%s","Command",c_user_info);
fprintf{patt_fptr[e],"%s\n",user_info); // writing to output file
flgl=1;
}
fscanf(com_user_fptr,"%s",user_info); // reading a line from file
}
}

5-17

Input Files Used in the Program

ptl.dat;
t0,p1,p2,t1

- 10,p4,13
t1,p3,t2
t2,p5,p6,p7,t4
© 13,p7,t4
t4,p8,t5

pt2.dat:
t0,p1,p2,t1
t0,p3,t3
t0,p4,t4
t1,p5,p6,t2
t2,p7,t3
t3,p8,t5
t4,p9,t6
t5,p9,t6

pt3.dat:
t0,p1,p2,t1
t0,p3,t2
t1,p4,13
t2,p5,t4
t2,p6,t5
t5,p7,t6
3,p8,t7
t4,p8,t7
t6,p8,t7
t7,p9,p10,p11,p12,p13,p14,t8
t8,p15,t9

ptd.dat:
t0,p1,t1
t0,p3,t3
t1,p2,t2
t1,p2,t4
t2,p4,t3
t3,p5,t4
t4,p6,t5
t5,p7,p8,t6
t5,p8,t8
t6,p9,t7
t7,p10,t8
t8,p11,19
t9,p12,p13,t10
t10,p14,t11
t11,p15,t12

pt5.dat:
t0,p1,t1
t0,p5,t2
t1,p2,p3,p4,t2

5-18

t2,p6,p7,t3
t3,p8,t4

pt6.dat:
t0,p1,t1
t0,p3,t3
t1,p2,t2
t1,p2,13
t2,p4,t4
t3,p5,p6,t4
t4,p7,t5

inp_data: (sequence of command numbers passed)
3223720452362456953142

119910970324745329781212
77534226297586248912913
1411109901011 14

(produces a combination of completed and developing attack patterns)

inp_data: (another sequence of command numbers passed)
3223720452362456953142
11991097032474532981212
753422629586248912913

1411109901011 14

(does not produce any completed attack patterns but some developing patterns)

com_user:(contains command numbers and user id who issued that command)
1,user23
2,user22
3,users
4,user25
5,user30
6,user3
7,userll
8,user8
9,userds
10,user53
11,user32
12,user99
13,userd7
14,user75
15,user50
16,user29
17,user66 -
18,user90
19,userl6
20,user21

5-19

ALGORITHMS FOR DATA INTENSIVE KNOWLEDGE DISCOVERY

Dr. J. L. Potter
Professor
Department of Mathematics and Computer Science

Kent State University,
Kent, OH 44242

Final Report for:
AFSOR SUMMER RESEARCH EXTENSION PROGRAM

Sponsored by:
Air Force Office of Scientific Research
and
AFRL, Rome, NY

December 1999

ALGORITHMS FOR DATA INTENSIVE KNOWLEDGE DISCOVERY

Jerry Potter
Professor
Department of Mathematics and Computer Science
Kent State University
Kent, Ohio 44242
potter@mcs.kent.edu

Abstract

During the 1998 Summer AFSOR program, potential future Air Force problems were
analyzed to determine their common features. The solution to many of these problems depends
on an advanced database/knowledge base capability. Current trends imply that conventional
largef, faster knowledge bases will be available from commercial off-the-self sources. However,
in addition to conventional data’knowledge bases, the Air Force problems require knowledge
discovery in raw unstructured data, use of semi-structured knowledge, integration of diverse
knowledge sources, utilization of the knowledge in knowledge bases by non-technical users,
access to data using "conventional communication skills", access to knowledge over long
distances and from multiple sources. Several current hardware and software technologies were
reviewed to determine their appropriateness for addressing these issues. As a result of this
review, it is concluded that associative algorithms augmented with neural network techniques are
well suited for time critical knowledge discovery. The research focused on two key components -
knowledge extraction from raw unstructured and semi-structured text and associative databases.

Neural networks are a critical element in both of these components.

6-2

ALGORITHMS FOR DATA INTENSIVE KNOWLEDGE DISCOVERY

Jerry Potter

1.0 INTRODUCTION

The Air Force today must deal with challenging problems that need fast, efficient
knowledge discovery and analysis of vast amounts of structured and unstructured data. This data
needs to be available for such applications as defense information warfare, automated information
processing from sensor to shooter, global access to intelligence information, the ability of
expeditionary forces to pick up and go any where at any time, the prevention of terrorism
through knowledge discovery, using knowledge to provide the ability to react to biological
warfare threats and real time planning [I198]'. With today’s sophisticated data gathering
technologies, more data is being collected than ever before. However, it is impossible to extract
information from all the data gathered in a timely fashion. The result is a complex collection of
knowledge, information, structured and unstructured data. Methods must be found to sort
through all of this data, extract facts and organize them so that the personnel facing the problem
who makes the decisions, whether a database expert or not, whether in an office, on a plane, or in
the field has access to the information they need to do their job. This research furthers the
activities of the Intelligent Knowledge Base System Working Group of the Information Institute
Workshop 98. The purpose of this research was to identify the best approaches to discovering,
accessing and supplying the diverse and remote knowledge and information needed to solve
today’s and tomorrow’s challenging situations.

The rest of this report is organized as follows. The next section is a brief review of data
and knowledge bases, knowledge discovery, and hardware. The third section describes an overall
design for the Air Force challenge problems. It examines some of the critical issues in detail and
identifies what algorithms were chosen for additional study. The fourth section discusses the

results of the study. The fifth section is the conclusion. References follow.

6-3

2.0 BACKGROUND

The advent of ever faster computers has created problems as well as solving them. In
particular, more data is collected today than ever before. There are three problems. One is the
overwhelming amount of data. There is more data in data and knowledge bases than can possibly
be understood. There are orders of magnitude more "raw" data waiting to be processed.
Second, the data and knowledge is not necessarily easy to access logically or physically.
Logically, it is often in a highly technical form not readily accessible to non-specialist personnel.
Physically even given today’s world wide access to networks, remote field terminals may have
restricted capacity and limited computing power. Third, traditional architectures are becoming a
hindrance to improved performance via greater chip density.

Modern database technology has attacked the abundance of data using various techniques
such as active agents and "push" technology whereby data is processed in the background and
relevant information is "pushed" to your attention. “Pull” techniques go after the data requested
by the user. Databases have evolved into knowledge bases where active components can filter
and search data with the efficiency of a librarian. Yet these techniques are not enough.
Knowledge discovery in unstructured data in the form of newspapers, telephone conversations,
TV, photos, raw electronic transmissions, etc. is most likely to be the source of the most current
information.

Research into knowledge discovery has been on going for many years. For example, in
the early 90's, the Message Understanding Conferences [MUC1-6] sponsored by NRaD and
DARPA focused on analyzing free text, identifying events of a specified type and filling in data
base templates. An alternative activity uses automatic program understanding [Kozaczynski,
1992, p. 217} as a paradigm for "data/knowledge" discovery in that programs are known to
contain knowledge, yet they can be very difficult to understand. Typical approaches use syntactic
knowledge of the domain to build a model of the abstract concepts to be recognized, starting with
a small model and evolving it as the domain becomes better understood. For example, in
programming, the “read data, process data” sequence is almost universal. The fact that the data
must be read before it is processed can be specified as a syntactic constraint. Facts and

relationships such as this can be incorporated into knowledge based rules.

6-4

AF problems have special demands on the hardware. In particular,.more raw data exists
than can péssible be processed using COTS hardware. State of the art computing power is
needed. Furthermore the field deployable units need as much computing power as can be
packaged in them since they are dealing with a time critical situation in which the user must
dynamically generate and access data’knowledge bases unique to the situation.

Parallel computing was extensively explored in earlier years as a solution to the
computing needs of intractable problems. The hypothesis was that at some point, large scale
integration would reach an upper bound beyond which it would be physically impossible to
improve and then parallelism would take over to allow large numbers of chips to be grouped
together into the needed super computers. However, chip capacities have continued to ithprove.
As individual computers have become more powerful and operating systems more sophisticated, it
is felt that explicit paralle! machines are not necessary except for very special applications and
that networks of computers could be used instead of large parallel machines for most other
applications.

However, the problem today is that large scale integration is so successful that engineers
are having difficulty determining what the most effective use of the available real estate is.
[Brockman, 1997] says that “classical architectures are already reaching their limits ...[p. 2]”.2
One of the critical barriers to improved performance of conventional architectures is the “gap
between the needs of a modern CPU core and the capabilities of the memory system.” [Keeton,
1997, p.2]* - the 1/O bus bottleneck. “An alternative approach to system organization, that
promises to deliver high performance with the greatest silicon efficiency, is to place the processing
logic on the same die as high density memory, especially DRAM [Brockman, 1997, p. 3].” Data
parallelism is needed to make the most efficient use of chip real estate in the Processor in
Memory (PIM) approach and programming techniques such as associative programming are

needed to make the additional computing power available to all.

3.0 KNOWLEDGE BASE GENERATION, ACCESS AND UTILIZATION
The goal of this research was to determine where advancements in state of the art

software and hardware technology would be useful to help solve Air Force data/knowledge base

6-5

generation and utilization for grand challenge problems. The first step was to develop a broad
framework common to the AFRL Challenge problems. Specifically all of the problems have a
need for data and knowledge. They need access to existing data/knowledge bases and the
information in raw, unstructured text. Access to the unstructured text requires that the
knowledge/data be extracted and organized into useable form.

A second theme common to many but not all AFRL challenge problems is the need for a
field deployable unit which has a direct link to the fore mentioned knowledge/data. These two
components called the base anchor system and the SKBAM and their relationship is illustrated in
Figure 3.0-1.

PUBLIC
/V \\ /V DATABASES
/1/ WEB
U\ PRIVATE
DATABASES
SKBAM FIELD UNIT BASE ANCHOR
DOMAIN SPECIFIC J UNSTRUCTURED TEXT
KNOWLEDGE BASE$ SEARCHING
NEURAL NETS
EXPERT SYSTEMS KNOWLEDGE BASE
A GENERATION

Figure 3.0-1 -The SKBAM and Anchor

6-6

The anchor system is responsible for 1) the on-going background processing of raw data,
and knowledge base generation, 2) the on demand, real time support of the SKBAM field
deployable units. It provides the link to the "outside" world of public and commercial data bases
as well as military data bases and to the domain specific data’knowledge bases generated by the
background processing.

The 1998 Information Institute Minnowbrook conference (I198) identified several
technology shortfalls needed by the proposed AFRL challenge problems. In the Processor
category, Very Large Data/Knowledge Bases, Parallelization, Contextual Understanding, Special
Purpose Architectures and Smart Chips were identified as areas of technology shortfall. The
technology shortfalls in the intelligent software include data capture, formal methods, knowledge
discovery, learning, information maintenance, mobile computing, mediation, inference and
ontology. Since the challenge problems are not mass market issues, it is unlikely that COTS
equipment, hardware or software, will be developed to address these shortfalls in a manner
consistent with the challenge problems. Therefore several were selected for additional analysis.

Considerably synergy can be obtained if the shortfalls from the intelligent software and
processor categories are addressed together. For example, many of the items from both
categories such as very large data/knowledge bases, parallelization, mobile computing, formal
methods, learning, knowledge discovery, ontology, contextual understanding and smart chips are
addressed in the development of a smart portable field deployable terminal (a Smart Knowledge
Base Access Machine - SKBAM) that works closely with the nondeployable base anchor.

Since the needs of the SKBAM may impact the design of the anchor system, it is
discussed first, then the anchor system itself, and finally the hardware support issue is addressed.

3.1 A Smart Knowledge Base Accessing Machine (SKBAM)
In those challenge problems were a field deployable unit is needed, it is anticipated that the
problems would need the following requirements for a SKBAM:
1) Pertinent data bases and knowledge bases with domain specific expert systems and neural
networks. Data from the selected sources will be customized for each challenge scenario

and pre-loaded into the field deployable device as a local suite of data and knowledge

6-7

bases (SDKBs) fronted with a non-technical user friendly, interactive man machine

interface requiring only conventional communication skills.

2) The field deployed user will verbally query the SDKBs. Simple queries will be answered
directly. More complex queries will be referred to the appropriate knowledge bases in the
SKBAM's anchor system as needed.

3) As the user queries the SDKBs interactively, new data from previously identified sources will
be sought, down loaded and integrated into the local SDKBs using push technology by the
domain specific anchor system.

In order to accomplish this functionality, the SKBAM's OS software would allow its
local SDKBs to I) interact with global/remote knowledge and data bases, ii) "pre-load" its
memory with anticipated background knowledge bases generated by the anchor system, iii) learn
what kind of information is normally requested to help formulate queries, iv) learn to retain down
loaded information so it does not have to be down loaded more than once, and v) to work with
very large assemblages of incomplete knowledge and raw data to perform such tasks as
knowledge discovery and integration.

Figure 3.0-1 is a symbolic functional illustration of a SKBAM in the field. The user is
surrounded by intelligent tools which are capable of accessing a vast variety of local information
and data and knowledge bases which are linked to the outside world via a communication link
which no matter how big is small compared to the amount of data in the outside sources.

The SKBAM would be voice/speech enabled and would support dynamic man/machine
exchanges. Consider for example, dealing with knowledge discovery in unstructured data. The
domain specific SDKBs would suggest knowledge templates appropriate for the current situation.
The user would accept and/or modify the suggestions and tell the SDKBs to proceed. The
SDKBs would search their own data and make requests of the anchor system for domain specific
or global data as needed. Based on what was found, the SDKBs and user would make new
suggestions. This is a combination of push/pull technology. The pull part limits the processing to
what the user of the SKBAM is immediately interested in. The push part informs the user what

was found to be of interest based on the SDKB/user designed queries.

6-8

3.2 Knowledge Acquisition Anchor System

The techniques used for on-going background domain specific knowledge extraction is
coordinated with that needed for the SKBAM device itself via the SKBAM anchor system. In the
on-going background operation, raw data is processed looking for pertinent information. One
goal of this research is to identify and develop techniques to efficiently process large amounts of
raw text and populate knowledge and databases. One key to knowledge extraction is the
realization that the text itself may be unorganized, but there is a very specific organization to the
domain specific data knowledge being sought. That is, an expert designs a template database for
the facts and knowledge sought. Raw text is searched and when items specified in the template
are recognized they are put into the knowledge base.

Experts design the anchor resident domain specific data/knowledge bases and knowledge
templates. It is assumed that in general there are many experts and many separate domain
specific tables. Given the vast amount of data to be processed, the extraction process must be as
efficient as possible. So all templates are processed simultaneously. However, in order to
simplify the details, this discussion is presented as if there were only one set of tables and
templates.

In all of the Air Force Challenge problem domains, the standard "W" questions - who,
what, when, where, why and how - are very important. The primary difference is in the
vocabulary of the different domains. Thus the vocabulary for terrorism may contain such words
as Waco, Branch Davidians, FBI, tear gas, etc.. While the vocabulary for national nuclear
security would consist of nuclear, test, antiballistic missile, etc.. The domain expert enters the
words in the appropriate categories as shown in Figure 3.2-1. The ANGSE search engine,
described next, then populates the tables.

3.2.1 The Associative Net Guided Search Engine (ANGSE)

The basic approach to associative fact extraction is to search for combinations 6f specific
keywords. These associations are context/syntax free. There presence in the same sentence,
paragraph, section or "article" is sufficient for extraction. These combinations of words are then
passed to an array of neural nets whose function is to determine 1) the significance of the facts, 2)

the expert system which should be notified, and 3) which expert agents, if any, should be activated

6-9

WHAT WHO HOW
treaty China contrary
nuclear terrorist fired
ballistic Russia probe
radiation army test

test congress simulation
evidence North Korea launch

Figure 3.2-1 A Partial Table for National Nuclear Security

to extract additional information. The architecture of the ANGSE is shown in Figure 3.2.1-1.
The major components are 1) the associative fact extraction component, 2) the neural net domain
classifier, and 3) the domain knowledge extraction agents. Each component is described in detail

in the following sections.

3.2.1.1 Associative Fact Extraction (AFE)

The AFE component is designed to process large amounts of raw text looking for domain
specific vocabulary words. A set of sensitivity indicators can be set to establish how many hits
per sentence, per paragraph, per section and per document must be present to cause entries to be
made into the domain tables. The sensitivity indicators can be set as a lower bound or as an upper
bound. The upper bound mode can be used during periods of high activity to filter out those
documents that are dominating the domain and allows through those texts which contain more
subtle inferences. In any case, it is assumed that the majority of entries generated by the AFE
component are incomplete and that more analysis of the raw text is needed to fill in the blanks.
This follow on analysis is initiated by the domain specific knowledge bases which are alerted to

incoming facts by the neural net classifier.

3.2.1.2 The Neural Net Domain Classifiers (NNDC)

As each associative template record is composed it is presented to the neural net

6-10

classifiers. Since many domain specific tables (DST) are being populated si.multaneously, it is
likely that an associative record should be passed to more than one table. The NNDC notifies the
appropriate domain experts of the incoming information.

The NNDC is the key component connecting the operation of the field unit with the
anchor background database generation component. It resides and is trained in the anchor system
but it is also loaded in a domain specific SKBAM and is designed to modify its weights and
update itself quickly to handle the dynamic events of the field environment.

The neural net is a 4 layer feed forward net with back propagation. The first 3 layers
consist of a standard feed forward neural net architecture. The 4th layer transforms output
activations from the 3rd layer to probabilistic output where Sum(p) = 1.0. The probabilit};
distribution is based on the Boltzman Distribution [Equation] where [alpha] controls the degree of

randomness in the decision making process®. See Figure 3.2.1.2.

o1/ @OCEY)

El)=F———
d 3l 0(Ee)

i=1

Boltzman Layer

Output Layer

<€— Hidden Laver

OOCO OOCO

Input Layer

Figure 3.2.1.2-1 The Boltzman Distribution and Four Layers of Net

6-11

The input layer consists of groups of nodes representing categories of synonyms (facts) in
the particular domain in question. For example, in the domain National Nuclear Security the word
nuclear and all synonyms for nuclear would be assigned to four input nodes(to indicate its relative
strength), the word missile and all synonyms for missile would be assigned to four input nodes,
etc. The hidden layer would be initially assigned to be SQRT(M*N) where M is the number of
input nodes and N is the number of output nodes®. This would then be adjusted dynamically to
produce the most efficient minimization of error during training. The output layer and the
Boltzman layer would consist of one node per expert system. The exact usage of the input layer
and the output layer are described below.

The NNDC system as a whole goes through a 3 step process: training, loading
and deployment. In the training and loading phases, there is much room to exploit data
parallelism (SIMD) and possibly instruction parallelism (MIMD). Neural network performance
can be significantly enhanced through SIMD parallelism, as implemented by [Rosenberg 19877".
MIMD and/or Multiple SIMD parallelism can be implemented across the expert systems so long

as the problems of concurrent read and write to the database(s) are addressed.

3.2.1.2.1 NNDC Training

During the training phase, I/O vector pairs are presented to the network. Input to the
network consists of categorical information for the domain in question. An output vector would
consist of one expert system selected to be associated with the input vector. For example, if the
domain is National Nuclear Secutity the following could be a list of input categories: nuclear, test,
ballistic, radiation, third world, China, Russia, terrorist, and plutonium. A particular input vector
presented to the network might be missile, test, and third world. That example input would be
associated with a particular expert designed to deal with that sub-set of topics. Such an expert
might be Missile Testing in Third World Countries. I/O pairs are selected from human experts
and real world data. This is standard for this type of neural network model and training proceeds
by presenting many (hundreds) I/O pairs to the network. One pass through the training set is an
epoch, and many (thousands) epochs complete training.

Since 1/O pairs are selected from human experts and real world data, some /O pairs will

6-12

conflict. This follows from real world expert decision making where two experts presented with
the same information will select different methods of analysis. For example, in the previously
given list (missile, test, and third world) most experts would choose to analyze this data in the
context of Missile Testing in Third World Countries, although some experts may choose Arms
Sales to Third World Countries or Super Powers Affiliated with Third World Countries. This
"conflict" is not really a conflict since it follows from human decision making where small
undetectable variations in data or personal biases and experience cause human experts to differ in
opinion. These small variations that cause a difference in opinion in human experts would be
tedious, if not impossible, to program into a rule-based system although the neural net captures
the variation by directly learning from the expert's decisions rather than all the input to the expert's
decisions. Note that the training set must reflect the more likely experts to deal with a set of
inputs by repeating those /O pairs several times in the set.

- Training is concluded when there is no significant change in output activations (3rd layer)
or errér has been minimized as in standard back propagation. Error in this model can not be
minimized to the same degree as would normally be found for a neural network that is learning a
strict function since some /O pairs will always be in error compared to other I/O pairs. When
training is concluded, a set of inputs can be presented to the network which will produce
probabilities that represent the most likely expert to handle the input, the second most likely
expert to handle the input, etc.

During the training phase the 4th layer is unused. The inputs are assigned as four fully
activated nodes per input fact. Initial experiments using a neural net in this fashion show that for
a small M (24) and N (3) and a training set of around 100 I/O pairs, training can be completed in
under 10,000 epochs.

3.2.1.2.2 NNDC Loading

Once the neural network is trained in a particular domain, it can be inserted in to the
model for the loading phase. Assuming all other parts of the system are in place, including the
(partially) filled domain specific database, the neural network is now used to select experts to

process raw text. A document is first presented to the associative fact extractor. The output of

6-13

this step is a (incompletej table of who-what-where-when facts (See Section 3.2.1.1). This table is
used in two ways. First, the table is "collapsed" so that the whole document can be presented to
the neural network at once as a single vector. The collapsed table is a histogram of all the facts in
the document along with the associated strength of the facts based on its frequency of occurrence.
The frequency of occurrence for a particular fact determines how many of the four input nodes
will be activated for that fact. Facts with the highest frequency are said to be "very frequent" and
all four nodes are activated. Facts with the lowest frequency are said to be "very infrequent" and
only one node is activated. Two nodes activate if the fact is "infrequent" and three nodes if the
fact is "frequent.” "Frequent" and "infrequent" are based on how often the fact appears between
"very infrequent" and "very frequent."

The neural net selects the experts to deal with the facts in the document in question. The
experts are selected with probabilities that determine the most likely expert to handle the
document, the next most likely, etc. It is here that the 4th layer of the network is used to generate
probabilities from the output activations. By varying (in the 4th layer, the degree of probability
per expert and the number of experts selected can be adjusted. Once the experts are selected and
ordered by probability, the table is presented to each expert line by line in it's original form
(uncollapsed). For each line in the table the experts process the information by drawing from the
database(s) to fill incomplete facts in the table and also insert facts to the database(s). Probability
information can also be transferred to the database to aid in conflict resolution for inconsistent
facts.

In this phase, the facts are presented to the network by activating one to four nodes per
fact or zero nodes if the fact is absent. This allows the network to decide on the strength of the
fact and it's importance to the document. Presumably, the number of times a fact (and all of it's
synonyms and pronouns) are mentioned in a document the more it represents the topic of that
document. In training, we are dealing with facts in isolation, so facts are presented full strength
for the purpose of learning. In the loading phase, facts are presented to the network in the
presence of other facts, so they are presented with frequency information. This allows the
network to make probabilistic judgments as to which expert(s) should handle the document. For

example, during training in the domain National Nuclear Security, the facts missile, test, and third

6-14

world presented in isolation would highly activate the output to the sub-domain expert in Missile
Testing in Third World Countries. During the loading phase, these same facts may be in the
presence of other facts such as terrorist and plutonium. These other facts may have a higher or
lower relative frequency. It is this frequency that will decide if the output for sub-domain expert
in Missile Testing in Third World countries is highly activated compared to other experts which
may be more appropriate to handle the additional information terrorist and plutonium.

During the loading phase, massive amounts of unstructured data can be inserted into the
structured database. The experts themselves could interact to refine data before it is inserted into
the database. Also, the probabilities generated by the network can be incorporated into the facts
of the da_fabase so that more frequently used or more common facts are retrieved more quickly,

similar to the way more common definitions are listed first for a dictionary entry.

3.2.1.2.3 Field Deployment

_ After training the network and loading the database, the neural net and the synonym
matcher are transferred to the field agent. In the field, the user submits a query in the same form
as the table entries from training and loading. The user may submit a who-what-where-when
query with one or more empty facts. These facts are transferred to the neural net at full strength
(as in training). The output of the neural net and the query is transmitted back to the base anchor
system where the experts and the database are online. The experts are assigned based on the
neural net probabilities transferred from the field agent. These experts read in the incomplete user
information, query the data base, and return the completed information to the field agent.

For example, the field agent may be have a neural net and several expérts trained in the
domain National Nuclear Security. While in the field, the user may be interested in uncovering
the possibility that nuclear material has been bought recently by a known terrorist in the Middle
East. The query could be Who(Terrorist Name), What(purchase plutonium), Where(Middle
East), When(?). The expert systems assigned by the field agent network would query the data
base, interact with each other to refine the data, and return their results ordered by probability (é.s
initially assigned by the neural network). The user would select the results(s) most suited to his
query, and that choice would be used to update the local (field agent) network. In this way, the

6-15

network inserted into the field agent would learn and adapt to the particular user submitting
queries.

It is intended that this system will be to uncover facts with results similar to data mmmg
Much knowledge is not explicitly stated but can be uncovered by a combination of facts and
documents. Also, the queries themselves can be taken as new facts to the experts. Maybe the
experts don't know right now if nuclear material has been bought recently by a known terrorist in
the Middle East. However, the question itself raises the fact that we should know if nuclear
material has been bought recently by a known terrorist in the Middle East. This incomplete fact
can be inserted into the database(s) just as would be done in the loading procedure. The next time

a document(s) on that subject is read into the system that incomplete entry may be filled.

3.2.1.3 Domain Knowledge Extraction Agents (DKEA)

. The third major component of the ANGSE are the domain knowledge extraction agents.
Upon notification of a new relevant associative fact record, the domain expert analyzes it to
determine its completeness. If components are missing, the domain expert notifies knowledge
extraction agents which analyze the raw text in more detail to extract missing pertinent
information. Due to limited funds and time, we were able only to develop a few agents. Three of
them are 1) who, 2) when and 3) not.

Natural language makes extensive use of pronouns and pronoun references. The purpose
of the "who/what" agént is to follow pronoun chains and resolve referents. For example, when
the "who" agent is notified of the sentential source of an association. It searches that sentence for
a noun-pronoun subject. If a pronoun is detected, the agent searches previous sentences for either
a repetition of the same noun-pronoun, or its referent. For example, consider the keyword
"compound" in the Waco domain'. It of course refers to the "Branch Davidian compound" near
Waco, Texas. However, in most texts pertaining to Waco, the word "compound" is used as a
pronoun for "Branch Davidian compound." This creates a problem in raw text searching since

"compound" is not an unusual word and may appear in many raw text documents only a few of

"It should be noted that the domains selected for this research were selected randomly
from the news events at the time this research was performed.

6-16

which refer to Waco. To address this issue, the pronoun agent must trace any records with
"compound" in them back to the complete reference.

Unstructured raw text is of course a misnomer. The text is not organized into relations or
tables but it is organized into sentences, paragraphs, sections and documents (or conversations).
During the preparation of the raw text for analysis, every word is assigned a sentence, paragraph,
section and document number as shown in Figure 3.2.1.3-1. Thus a pronoun such as "compound”
can be traced back (or if necessary, forward) sentence by sentence and until is referent is found.

This algorithm, described below, is well suited for a data parallel processor.

What Who How Document Section Paragraph Sentence
Number Number Number Number

treaty senators testing 1 1 0001 0002
test . shoot 1 1 0002 0005
test . down 1 1 0002 0005
rocket . test 1 1 0002 0005

Figure 3.2.1.3-1 Text Structure Code

First the word of interest is found in all sentences. Next the article "the" is searched for.
Every occurrence of "compound" proceeded immediately by "the" is deleted since "the
compound" is the pronoun for which a referent is sought. The remaining occurrence of “"the" and
"compound" brackets the definition as shown in Figure 3.2.1.3-2. The definition is then extracted

and broadcast to all pronouns so that the search need only be done once.

ATOM YY, 22,
on 00
the 10
Branch 01
Davidian 01
compound 01
near 00

Figure 3.2.1.3-2 The Bracketed Referent

A second example is the "not" agent. The polarity of every fact extracted must be
determined absolutely. Since initial associations are determined without analyzing the entire

sentence, every fact requires that the "not" agent be initiated. Since, in general, the associative

6-17

search engine may extract many more "facts" than can be processed. The "not" agent is only fired
when the neural net determines that the fact should be established. The not agent looks for the
key word "not", the contractions "nt" and "n't" as in "can't", "won't." It also looks for other
negative clues such as "un" prefixes. Thus it must be able to establish that "The judge was
unhappy with the verdict" and "The judge was not happy with the verdict." both have negative
polarity.

A third example is the "when" agent. It simply looks for keywords such as Monday,
Tuesday, yesterday, tomorrow, week, month, and year. However, it must look for specific
modifiers also such as "next week", "last week", etc. But the more difficult task is to associate a
time with a specific association because frequently, the "when" information may be several
sentences or even paragraphs away, and like the "who" agent, it must be able to establish and
follow referential chains. And like the "who" situation, the time referents may be either in front of

or after the referent.

3.2.2 Associative Databases

The SKBAM is a dynamic interactive interface on a portable terminal used by an
emergency workers. The users may have no formal training in Data/knowledge base use (i.e. they
do not know SQL). They may not be able to type well. They do not know how to build new
relational databases. But it is critical for them to be able to build dynamic, minimally structured
data bases that can be accessed by queries approximating natural language. Associative databases
fit this need. They are an intermediate step between raw unstructured text and a highly structured
relational data base. Associative databases search unsorted data directly and use Falkoff's
algorithm® to find the "best" (maximal or minimum) values. Thus the data does not need to be
sorted, inverted lists are not necessary and all variables (fields of data) are available.

For example, considerable a resource database. In a disaster situation, knowledge of the
available resources is vital. In particular what professionals are close by - policemen, sheriffs,
national guard, air force reserves, etc. What special expertise do they posses? Arms expert,
explosive expert, evacuation expert, crowd control, dog handlers for tracking, dog handlers for

finding victims? A database of physical resources such as cars, trucks, fire engines, ambulances,

6-18

hospitals, etc. is also important. It is assumed that databases of this nature have been compiled
ahead of time, but obviously in a real dynamic emergency it is out of date when it is needed. That
is, some of the personnel are on vacation, one or more vehicles is undergoing repairs, etc.
Therefore it is critical that this data base can be uﬁdated easily and efficiently by a non database
expert. Associative data bases seem to be well suited for this job.

The relational database technology and the knowledge base techniques of today are
outstanding. But conventional knowledge base technology is too structured. It is unlikely that
the “syntax and semantics” of a specific terrorist activity such as that in East Africa can be
specified in detail in advance. Unfortunately, the current research trend into object oriented
databases is heading in the wrong direction for SKBAM applications since “Object data models
are very rigid and inflexible ...[Burleson, 1998, p.3]” A more interactive, informal, associative
approach is needed.

~ Associative search and databases have been researched and discussed for many years, and
even though they are still primitive compared to relational techniques, they are ideal for the
remote, real time interactive processing environment of SKBAM. Associative searching is a
depth first search process as opposed to the relational database breadth first. As a result,
associative searching is faster in situations where a first answer is important.

Several languages, such as ASC'[Potter, 1992], have been designed based on associative
principles. The main advantage of these techniques over conventional database languages is that
they are not only capable of processing unsorted database data, but also “unstructured” data such
as raw text and imagery. Associative languages such as ACE"! have a natural language like
syntax, not a mathematical set based syntax like SQL and thus are easier for non-database
specialists to learn and use and they are suitable for voice input.

Associative techniques such as structure codes and associative unification can be very
useful when dealing with knowledge discovery and large amounts of unstructured data. A
structure code is a tag containing structural information which is attached to each datum. The
document number, section number, paragraph number and sentence number of Figure 3.2.1.3-1 is
a structure code. The advantage of structure codes is that data does not need to be physically

reorganized. The datum is static in memory, structure is added by modifying the code as

6-19

processing progresses. Structure codes can be used to learn at the software and hardware levels.

Table 3.2-1 illustrates some of the similarities and differences between associative and relational

databases.
Associative Relational
Basic Data Organization tabular tabular
Key Fields not required required
Associative access ' yes no
Languages natural language based (ACE) | math based (SQL)
Row access optionally directly named requires search operation
Column (field) access names not required names required
Knowledge of table structure | not required required
Duplicate entries allowed not allowed

Table 3.2 - 1 Comparison of Associative and Relational Databases

3.3 Hardware Considerations

The selection of an architecture for the SKBAM and anchor base system is critical. Multi
processor (MP) designs (including MIMDs and clusters) are the "default" parallel computer.
However, in light of the extensive dynamic data parallel computational requirements, the utility of
associative processors (APs) are also investigated. See [Potter, 1992] for a detailed description
of associative processors.

In traditional complexity analysis a basic operation such as a compare is often used to
measure the complexity of an algorithm. If the basic operation is common to different
architectures, then the "power" of different algorithms which execute on these machines can be
compared. Thus conventional sequential computers can be compared with machines that have
numerous processors, networks of processors and even phantom machines such as the PRAMs. as
long as the analyses are "normalized" by the number of CPUs. Unfortunately, data parallel and

associative processor are mis-analyzed by this standard comparative analysis technique. The

6-20

following items illuminate the problems and examine the claim that APs are better than MPs in

general for massive data parallel tasks and for the SKBAM in particular.

3.3.1 Algorithm Conversion

The attitude that MPs are "better" than APs is promoted by misleading examples in
introductory computer science texts'? of how easy it is to modify "embarrassingly parallel”
sequential algorithms such as the Manhattan telephone book problem to run on an MP
architecture . Many sequential algorithms are erroneously analyzed when ported to MPs
because the induced communication component of the MP implementation is often ignored.
Most programmers simply do not understand that when they convert a sequential algorithm into
an MP algorithm, that they are introducing a potential NP hard synchronization /communication
component which dominates the converted parallel algorithm.

- A commonly accepted relationship for the increase in speedup for problems is:

. speedup = Ts/Tp
where: Ts is the time for the sequential algorithm and Tp is the time for the parallel algorithm.
The error, taught in a freshman text, is that the time for the parallel algorithm can be calculated
from the time for the sequential algorithm by the formula:

Tp = C(Ts/U)
where U is the number of CPUs. This formula assumes that the additional complexity introduced
when the sequential algorithm is adapted to the MP algorithm can be accounted for by some
constant C, and that the speed up is linear.

" This is a major misunderstanding of the nature of control parallelism. Notice that when
converting the sequential pseudo code of Figure 3.3.1-1a into the MP pseudo code, four
additional lines of code are needed for communication and synchronization - an INTRODUCED
COMPONENT not in the original sequential .algorithm and one that is independent of n, the size
of the Manhattan telephone directory.

6-21

synchronize
send the searchName to U processors;

for (i=0; i<n; i++) for(i=0; i<n/U; i++)
if (searchName = dataNamel[i]) if{searchName == dataName[i])
return phoneNumber([i]; return phoneNumber[i];
synchronize

reduce answer

a - The Sequential Solution b - The MP Solution
Figure 3.3.1-1 - The Manhattan Telephone Book Problem

The communication component introduces a real time scheduling aspect which CAN NOT BE
IGNORED. Consider the code in Figure 3.3.1-2, which represents the "ultimate" in (data)
parallelism with one processor for each data item to be searched (i.e. U=n). In this limit, the

synchronize

send the search name to U processors;

if (SearchName = data name)

return phoneNumber;

synchronize
reduce answer

Figure 3.3.1-2 - The "Embarrassing Parallel" Algorithm

synchronization effort is not "small" or "constant" and indeed can not be ignored since as the time
for searching becomes smaller by adding more processors, the time for communication
BECOMES LARGER and dominates the complexity analysis of the parallel algorithm. This
fundamental misunderstanding of MP algorithms is the basis for much of the frustration that
occurs when scientists parallelize their code and instead of obtaining a linear increase in through
put actually achieve diminishing returns per processor added until achieving a negative increase at
the point that adding a processor actually requires more communication overhead than the
processor can contribute to solving the problem. In contrast, since an AP has only one instruction

stream the problem can be solved in constant time if there is one PE per data item.

3.3.2 CPUs and PEs are not equivalent.

6-22

The standard practice of coupling of the ALU and instruction streax.n (IS) components of a
computer into a CPU is a major cause of inaccurate AP versus MP comparative analysis. In
particular, the traditional emphasis on the effort of the ALU (i.e. the data parallel component) at
the expense of ignoring the impact of the IS (the control parallel component) allows the
perception that sequential algorithms can be implemented on MPs simply by replicating the code.
In order to more accurately compare algorithms between different architectures, MPs, APs and
sequential, it is essential that the CPU be divided into IS and ALU components. In the case of
sequential algorithm analysis the result is the equivalent as traditional analysis. However, in the
case of MP algorithms, the importance of the communication component (IS) becomes apparent
as described in Section 3.3.1. And in the case of APs, the algorithms are not falsely penajized for

having large numbers of "phantom" ISs. Section 3.3.3 below expands on the implication.

3.3.3 Is a SIMD a Parallel Processor?

. In Flynn's taxonomy of MIMD, SIMD, SISD and MISD, MIMDs and SIMDs have
traditionally been grouped together as parallel processors. However, as discussed in Section
3.3.2, if the CPU is divided into an ALU and IS, then SIMDs should be grouped with SISDs.
That is, for comparative analysis, the grouping based on ISs (i.e. the control parallel part) is more
critical than the grouping based on ALUs (the data parallel part). Certainly a SIMD is a parallel
processor, but of the two components, ALU and IS, the IS component is by far the more
powerful (and expensive). That is, the IS embodies the Turing machine/FSA capability central to
the power of a general purpose digital computer. The ALU by itself can only process two
numbers. When dealing with different algorithms on similar architectures and CPUs,
distinguishing between these two components is not critical, but the extension of this approach to
different algorithms on different architectures leads to inaccurate comparisons.

For example, commonly, an m processor MP and an m processor AP would be considered
to be of similar power. But this is equating m IS/ALUs against only one IS with m ALUs (weak
ones at that), surely not a fair equivalence even in the world of comparatively analysis where
constant factors can be ignored. But order of magnitude factors must be accounted for. It is easy

to understand that the power of an IS is as least an order of magnitude more powerful than that of

6-23

an ALU. Thus it is more accurate to treat APs as SISDs with very wide data paths than as the
equivalent of control parallel computers.

As another example of the misunderstanding, consider that many feel that it has been
proven that broadcasting is a log n operation for all parallel computers. In reality, any parallel
computer with multiple instruction streams does take log n time. But since an AP only has one IS
it can broadcast in constant. This is easy to prove - the data to be broadcast takes the same path
as the instructions themselves. If you accept that any operation in a SIMD is constant time,

compare, add, etc., then you must accept that broadcast is also.

3.3.4 Wide Memory to ALU Bandwidth

One of the simplest measures of an efficient processor is the amount of data that can be
delivered for processing in each cycle. In contrast to MPs where instructions and data share a
common path between memory and the ALU, in an AP the paths are different. In a single MP,
this pathway may be 32, 64 even 128 bits wide - in an effort to improve the data delivery ratio.
Yet in the inner most nested loop shown in Figure 3.3.4-1a, five instructions are required to
process one datum (a five to one bits processed ratio). In an AP, the memory to IS path may be
the same size as in an MP, but the data path can be thousands of bits wide. With a modest 512 bit
wide data path as in Figure 3.3.4-1b, only eight instructions are required to process 512 bits (a
one to two bits processed ratio). For this simple example, the AP is 10 times more efficient than a
single MP. The comparison improves for the AP when additional MPs are added because of the

additional communication overhead MPs require.

3.3.5 Keeping the Processors Busy

In MPs, processors (CPUs) are a major resource and must be efficiently utilized, in APs,
however, PEs are frequently only one bit wide, consisting of a very small number of gates and it
is often more efficient to "waste" it than to execute the extra instructions nécessary to make use of
it. This "disadvantage" of APs occurs when conditionals are present in a program, since the AP
must execute all branches sequentially. This "disadvantage" frequently results in long sequences

of uninterrupted code allowing very efficient programming and data pipelining. The inner most

6-24

loop of a program is executed in parallel in the hardware - the essence of data parallelism. There
are cases with long stretches of conditional code, where executing the alternatives in parallel is
cost effective. In these situations, new AP designs such as MASC® with multiple ISs are capable
of supporting these situations efficiently.

Some designs try to use the wider memory-to-cpu busses by fetching 2,4 or 8 instructions
at one time. These "wide word" (or Very Long Instruction Word - VLIW) designs, however,
suffer enormously from the basic programming limitations placed on them by the von Neuman
model. That is, in standard sequential programming, processing varied data is accomplished by
branching around the exceptions. In normal operations, branches are executed every 3 or 4
instructions. A branch is a discontinuity in program flow. Today’s architectures have been
modified with layers of cache memories and pipelines work but when instructions and data flow
continuously and smoothly. The wide word technology depends on software - compilers and
profilers to "fix" the branching problem. This is a poor solution, the best software can not make

up for a poor hardware design.

for (i=0; i<512; i++)
if (a[i] > 50) if (a[$] > 50)
b[i] = a[i] * 0.33; b[$] = a[$] * 0.33;
else else
bfi] =a[i] * 0.5; b[$] = a[$] * 0.5;
3.3.4-1a - MP Loop 3.3.4-1b - An AP Loop

Figure 3.3.4-1 - Loop Processing - MP vs AP

3.3.5 Bigger Computers are Smaller Computers

Increased computing power is achieved to a large degree by denser chips. This introduces
the problem of "excess chip capacity." That is, when processor chips are able to include many
capabilities beyond the basic 32 bit IS/CPU and when memory chips can store billions of bits of
data with room left over, what should the extra space be used for? The primary bottleneck in
today's architecture designs is the von Neuman bottleneck from memory to CPU. As described in

Section 3.3.4 the AP is easily expandable to take advantage of any increase in size of the data

6-25

path. Indeed, the APs architecture is ideal for the processor in memory, (i.e. PIM) approach.

[Brockman, 1997] claims that PIM is the only way to overcome the I/O bus bottleneck
and discusses the spectrum of PIM designs. [Bowman, 1997] concludes “Existing architectures,
whether simple, superscalar or out-of-order, are unable to exploit IRAM’s increased memory
bandwidth and decreased memory latency to achieve significant performance benefits
[abstract].”™ The most promising design for data/knowledge base applications are SIMD based
associative computers such as the STARAN developed at RADC for database [Liuzz, 1980]"
and other applications [DeFiore, 19717, [Stillman, 1971]" and [Orlando, 1971]*.

3.3.6 APs are Easier to Program

There are three reasons why APs are easier to program than MPs. First, no inner-most
loops as illustrated in Figures 3.3.4-1. Fewer loops means less code to write and debug. Second,
less communication as mentioned in Section 3.3.1. Since there is only one IS, there is no inter-IS
control communication (control parallelism). This is the component that most programmers
identify as the "hard" part of parallel programming. The third reason is that the VACE [Potter,
1997] paradigm allows APs to be efficiently programmed by voice in a manner similar to a
spreadsheet. While the paradigm can be implemented on any general purpose computer, it is a
natural "match" to the AP architecture allowing a very efficient implementation of large data

parallel database algorithms.

4.0 Results

Associative Fact Extraction, Neural Net Domain Classification and Domain Knowledge
Extraction algorithms were developed and tested. A prototype associative database was
designed.

The associative fact extraction algorithm was implemented in two steps. The first step
processes the Jexicon. That is, the entire lexicon is input and passed by 64k words of raw text
(assuming a 64k data parallel computer). The PEs may be loaded with more than one word
apiece to optimize I/O or for other considerations, however, the lexicon processing timing is still

the same, as the additional words would appear as virtual PEs and would require a separate

6-26

lexicon pass for each set of 64k words. During the lexicon pass, all of the text is searched for
lexicon element, thus the time is a function of the size of the lexicon. The measured results (not
addressing 1/0) are 208.7 text words searched per instruction. So a lexicon of 16k (16384)
words would require 5,144,576 instructions or .0514 seconds (assuming 10 nano seconds per
instruction) to search a 64k text. This is 1273885.35 words of raw text compared against 16384
words of lexicon per second (or 20g comparisons per second vs 0.1g comparisons for a

conventional computer of the same speed - a factor of 200 BUT the SIMD number includes

overhead, the conventional computer number does not).

Expert Selected

-

a
N i |

PN RO} = =

o
£
SURIIN I PGP PR

o
LU U

s b f s ma] s =P N

1 Actual

N N s

12 Actual

-] -l NN

13 Actual 1

" Actual 2

15 Actual 1

S Y P LU L L

—
=]
g

L X3

- n| . .

N NN

8
N N e o

Table 4.2-1 NNDC Expert Selection

6-27

The test data resulted in 0.090 to 0.202 facts extracted per word processed. This is
probably a relatively high amount as the test files were chosen to be fact rich. On average, each
fact extraction required about 1500 instructions (or 15 microseconds)

The basic design of the NNDC component (Section 3.2.1.2) was tested using input from
the AFE component similar to that shown in Figure 3.2.1.3-1. The neural net consisted of 6
input facts (24 nodes) and 3 output nodes (experts). After training, 20 random vectors of 6 facts
with random strengths were presented to the network. The output of the network was recorded
along with it's associated input vector. The actual output was compared to expected output with
the results shown in Table 4.2-1. The neural net assigns probabilities to the 3 experts and the two
highest are chosen (noted by 1 and 2 in the Expert Selected columns). The neural net output
conformed to the expected output in all but 4 of the total 60 outputs (93.3% success). There was
a single failure in vectors 3 and 14 and a double failure in vector 5. The data used was selected
strictly for the purpose of conducting tests of this procedure. The expected output was manually
selected based on the same criteria that produced the training set.

When the domain experts are notified of a new fact by the NNDC, the Domain Knowledge
Extraction Experts review the fact for completeness. The Pronoun expert requires 20 micro
seconds of overhead per fact plus 6 microseconds for each word in the pronoun referent. The
Not expert requires 1.34 microseconds for each fact (sentence) analyzed. The When expert is
implemented similarly to the pronoun expert, it requires 20 microseconds of overhead plus 6
microseconds for each word in the time expression. The timings and algorithms were developed
in isolation on a one by one basis, but in actuality, a considerable portion of the overhead would
be absorbed by the lexicon processing. Simply put, the lexicon processor would contain the
special keywords the experts look for and when found, the lexicon processor marks then with
flags. The lexicon processor can perform this effort in basically the same amount of time for the
entire 64k word document as the extraction experts require for one fact.

An associative database interface was designed for the SKBAM. The associative database
interface lets the SKBAM user access the data and ask questions in a pseudo-natural language
format. Facts in the tables generated in response to the table pattern of Figure 3.2-1 can be

accessed by the names in the who column. Thus the query "Did China sign the treaty?" will

6-28

access all facts with China in the who column which will then be further processed looking for
treaty in the what column. But all facts may also be accessed associatively, i.e. by "describing"
them. For example, "Who did not sign the anti-ballistic missile treaty?" In order to answer this
question, all facts containing anti-ballistic missile treaty must be identified, the associated who
column extracted and deleted from the list of all the names in the who column. Processing
negative questions such as this can be very time consuming. However, the timings for the
associative interface were not determined because it is real time. That is, the interface can
process the input faster than the relatively slow user can generate it - the SKBAM process input
and finds the local answer faster than the user can speak. When the user asks a question that
requires anchor system support, the time for a response may be considerable, but beyond the
scope of this research.

In order to verify the above timing estimates, which were determined by emulation, and
establish the impact of system integration on them, the next phase would require physical
implementation and integration of key components on actual hardware such as a Pyxsys SIMD
computer. For example, the exact density of facts in the unstructured text will have a great
impact on the overall speed of the algorithms. As mentioned above, all of the times are based on
a relatively high density. In reality, it is expected that less than 1% of the raw text would have
any hits at all.

As mentioned above, data parallel implementation of the neural net component promises
very fast execution, but it needs to be verified. The next step would be to implement the neural
net on the data parallel computer and test it with actual data in a small, easily verifiable data set.
Upon successful completion of this test, a neural net would be constructed for a real domain and
verified against actual expert data. As has been described, the neural net chosen is a simple feed
forward network. After the procedure in general is verified and found to be sound. The 93.3%
success rate can be improved by replacing this simple neural net by a more sophisticated neural
network or hybrid network that incorporates a rule-based layer. Another way to increase the
success rate could be in the experts themselves. Experts can share data and compare results to
verify their decisions. If significantly conflicting or inconsistent data is found between experts they

could augment the input and resubmit to the network to produce a new, hopefully better,

6-29

selection.
Since access to public and military data bases over long distances should be "invisible" to
the SKBAM user, it is critical to implement this portion of the system on hardware simulating the

actual communication links from SKBAM to anchor to database.

5.0 CONCLUSION

The solution to many future problems depends on an advanced data/knowledge base
capability. However, we do not need research on how to build large data/knowledge bases, we
need new research on how to make knowledge in knowledge bases useful, how to get it to the
user over long distances and from multiple sources, how to discover knowledge in unstructured
knowledge bases, how to use semi-structured knowledge, how to access data using "conventional
communication skills", how to "integrate" knowledge from diverse sources and how to keep
knowledge secure.

- Data on a smart field deployable unit suitable for Air Force challenge problems is likely to
be fragments of knowledge bases, raw data, complete and incomplete data bases and the user will
need all of the above features to use all available knowledge such as 1) semi-structured and
unstructured text, 2) WEB based data, 3) existing public databases, 4) existing military databases
such as the digital terrain database.

The initial algorithm analysis is promising, but actual test implementation as described in

Section 4.0 is required to further this research.

6.0 REFERENCES

1. [II98] Preliminary report of the Intelligent Knowledge Base Systems Working Group of the
Information Institute’s Workshop 98, June 24-26, 1998, Minnowbrook , NY.

2. [Kozaczynski, 1992] Kozaczynski, Wojtek, Jim Ning and Tom Sarver, "Program Concept
Recognition," in Proceedings KBSE '92, McLean, VA, Sept. 20-23,
1992, pp. 216-225.

3. [Brockman, 1997] Brockman, Jay B. and Peter M. Kogge, The Case for Processing-in-
Memory, University of Notre Dame, Department of Computer Science and Engineering, TR-97-
3.

4. [Keeton, 1997] Keeton, Kimberly, Remzi Arpaci-Dusseau, and David A. Patterson, “IRAM
and SmartSIMM: Overcoming the I/O Bus Bottleneck”, University of California at Berkeley,
Computer Science Division, http://iram.cs.berkeley.edu

5. [Watkins, 1989] Watkins, C., Learning with Delayed Rewards, PhD. Thesis, Cambridge
University, Cambridge, UK, 1989.

6.[Masters, 1993] Masters, T., Practical Neural Networks Recipes in C++, Academic Press Inc.,
1993, p. 177.

7.[Rosenberg, 1987] Rosenberg, C. and G. Blelloch, "An Implementation of Network Learning
on the Connection Machine, " in The Proc. of the Joint Conf. on Artificial Intelligence, Milan,
Italy, 1987, pp. 329-340.

8. [Falkoff, 1962] Falkoff, A., "Algorithms for Parallel Search Memories," J. Associative
Computing, Mar. 1962, pp. 488-511.

9.[Burleson, 1998] Burleson, D. K. Inside the Database Object Model, CRC Press, Boca Raton,
FL., 1998.

10. [Potter, 1992] Potter, J. L., Associate Computing, Plenum Publishing, New York, 1992.

11. [Potter, 1997] Potter, J. L., "ACE: An Associative Calculus Data Structure" in Journal of
Parallel and Distributed Computing, No 51, 1998, pp. 63-74.

12.[Schneider, 1998] Schneider, G. and J. Gersting, AN INVITATION TO COMPUTER
SCIENCE, PWS Publishing, Pacific Grove, 1996.

13.[Potter, 1994] Potter, J. L., "ASC: An Associative Computing Paradigm," Computer,
November, 1994, pp. 19-26.

14.[Bowman, 1997] Bowman, N., N. Cardwell, C. Kozyrakis, C. Romer and H. Wang,
“Evaluation of Existing Architectures in IRAM Systems”, University of California at Berkeley,
Computer Science Division, http://iram.cs.berkeley.edu

15.[Liuzzi, 1980] Liuzzi, R. The Specification of a Data Base Machine Architecture Facility and a
Methodology for Developing Special Purpose Function Architectures, RADC-TR-80-256, 1980.

16.[DeFiore, 1971] DeFiore, C., N. Stillman and B. Berra, Associative Techniques in the Solution
of Data Management Problems, Proc. ACM '71, August 3-5, 1971, Chicago, III, p. 28-36.

17 [Stillman, 1971] Stillman, N., C. DeFiore and P.B. Berra, Associative processing of line
drawings, in The Proceedings of the Spring Joint Computer Conference, 1971, pp. 557-562.

18. [Orlando, 1971] Orlando, V. and P. B. Berra, Associative Processors in the Solution of
Network Problems, 39th National ORSA Meeting, May 5-7, 1971, Dallas, Texas

6-31

A DISTRIBUTED CONCURRENT INTRUSION DETECTION
AND RECOVERY SCHEME BASED ON ASSERTIONS

Shambhu J. Upadhyaya
Associate Professor
Department of Computer Science and Engineering

State University of New York at Buffalo
Buffalo, NY 14260

Final Report for:

Summer Research Extension Program (SREP)
(AFOSR Contract Number - F49629-93-C-0063)
Air Force Research Laboratory
Information Directorate
Rome Research Site

Sponsored by:
Air Force Office of Scientific Research
Bolling Air Force Base, DC
and
Air Force Research Laboratory

Information Directorate
Rome Research Site

February 2000

7-1

A DISTRIBUTED CONCURRENT INTRUSION DETECTION
AND RECOVERY SCHEME BASED ON ASSERTIONS

Shambhu J. Upadhyaya
Associate Professor
Department of Computer Science and Engineering
State University of New York at Buffalo

Abstract

This report describes the development of a new intrusion detection scheme based on con-
current monitoring of user operations. In this scheme, prior to starting a session on a
computer, an auxiliary process called a monitor watchdog queries users for a scope file and
then generates a table called a sprint-plan. The sprint-plan is composed of carefully derived
assertions that can be used as a basis for concurrent monitoring of user commands. The
plan is general enough to allow a normal user to perform his task without much interference
from the watchdog or system administrator and is specific enough to detect intrusions, both
external and internal. Our scheme leverages the concept of signature analysis which has
successfully been used for concurrent error detection in the fault tolerance domain.

The funding has resulted in a preliminary prototype of an on-line monitoring tool that
can be employed for monitoring intrusions in a distributed computing environment. This
scheme is a significant enhancement over the traditional approaches that rely on audit trail
analysis in that the intrusion detection is concurrent and does not require the processing of
audit data. This can help in fast recovery from successful break-ins. Our effort includes the
development of a graphical user interface for the easy user-input and the implementation
of the distributed monitoring platform. The research also brings out some new ideas on
reasonableness checking for the automatic generation of assertions.

7-2

A DISTRIBUTED CONCURRENT INTRUSION DETECTION
AND RECOVERY SCHEME BASED ON ASSERTIONS

Shambhu J. Upadhyaya

1 Introduction

Preemption of attack prior to any damage is what is primarily desired of information sur-
vivability research. However, it is unlikely that such objectives can ever be met with the
current practice of intrusion detection using audit trail analysis. Clearly, audit trail analysis
provides only an after-the-fact solution. Therefore, a proactive approach is necessary to
detect intrusions as soon as they occur so that damage could be minimized and service be
restored without significant downtime [1]. Ability to quickly and correctly detect and iden-
tify malicious information attacks is critical to information survivability {2]. In this research,
we try to advance a step closer to the said goal by developing novel schemes that do not
entirely depend on passive audit trail analysis. Our research leverages two well established
concepts from traditional fault tolerance, namely, concurrent monitoring using assertions
and reasonableness checking, and uses audit trail analysis techniques as an added layer of
protection.

The problem with the approaches based on audit trail analysis is that a vast amount of
data is created, especially when user load is high. It is difficult for any detection scheme to
catch up with the generation of audit data [3]. Since only a fraction of the data is relevant
for intrusion analysis, filtering and/or multi-level processing of audit data may help [4].
However, the approaches using audit data analysis as the base-line technique cannot provide
a truly real-time detection because any on-line efforts to reduce the data size inherently
slow down the detection process. We present a fundamentally different approach in order to
address survivability in high security applications.

In our approach, intrusions are captured on the basis of satisfiability of computing premises
by observing conclusions resulting from user actions [5]. This set of assertable conclusions,
or simply assertions, is generated by a strategic query of system users at their first login of
the daily session, irrespective of whether the subject is a bona fide user or an intruder. The
generation of this finite set of assertions by a direct query of users and its processing for
intrusion monitoring is based on sound principles of signature analysis [6]. First of all, any
inconsistent or anomalous input submitted by the users may raise suspicion and serve as a
trigger for intrusion detection. Secondly, our method does not need processing of huge audit
data. Hence, detection can occur with low latency and in real-time. Though our technique
does not depend on audit trail analysis, it can still be used as a simple add-on third party
module to enhance the detection coverage of audit trail analysis based detection schemes.

We consider a distributed system of a network of workstations or PCs as the applica-

7-3

tion domain. A hierarchical monitoring scheme has been developed based on the notion of
verifiable assertions. In the remainder of this report, the basic principle of the distributed
concurrent intrusion detection scheme and the prototype implementation are given. A de-
tailed description of the architecture, an algorithm and some illustrations appear in [5].

2 Basic Principle

Our concurrent intrusion detection technique is based on the simple principle of satisfiability
of computing premises by observing conclusions resulting from user actions. The system
starts by first generating a plan for users and then monitoring the users for any significant
deviation from this plan. The plan is composed of verifiable assertions that are automatically
generated on the basis of a few system usage inputs provided at the start of a session.
Once an assertable plan called sprint plan (Signature Powered Revised INstruction Table)
is generated, the user will be monitored to see how close the plan is maintained during
a given session. Certain tolerance limits are set to take care of unplanned, but authentic
deviations. Any significant deviations from the plan can be interpreted as an intrusion,
external or internal. At this stage, either an interactive dialog is opened with the user or the
information is shared with other monitors in the network to initiate system level recovery
if the threat is viewed real. A block schematic of the intrusion detection approach with a
separation between the one-time effort and the run-time events is given in Figure 1.

Runtime Effort
- Assertion Watchdog

Runtime Generator Engine
Commands

Tolerance limits

Counters
Thresholds etc.
Intrusion Signal

Figure 1: Simplified Flow Diagram of Concurrent Intrusion Detection

Figure 2 shows the block schematic of the monitor process at run-time. Some of the
enhancements to reduce false positives are shown in the figure by dotted boxes.

ratin
User Command Ogestemg
Buffer 0S)
Atomic Operation Er;‘l'el?: "
Generator Table of
Verifiable
Assertions
ittt J"'"""".
Inclusion i Pattern
Checker v M%t::n!:mg l
S N S
Counter and { Buffer : i
To User | Dialog Initiator § Register E i
L——I greeeeenasen e
Exception
Generator
Intrusion Signal
To Master Watchdog

Figure 2: Block Schematic of the Monitor

3 Prototype Development

As described before, the basic system prototype consists of 3 main components, namely, a
one-time monitor, a run-time monitor and a comparison module. The one-time monitor has
to interact with the users and hence is implemented into a graphical user interface (GUI)
using the Java language. The GUI will ease the user input of session scope.

The one-time monitoring takes place as soon as the user logs in. When a user logs in
with a userid password submission, the password verification is done first as shown in the
flowchart of Figure 3. There is a counter which keeps track of the number of login attempts
and the user is given only a specific number of attempts to login. This number is decided
upon the amount of security we are looking at for the particular system. If the user is
authenticated to login he/she is provided with a series of GUI windows to specify the scope
of the session. The user selects a particular application he/she is planning to work on. At
this stage of the implementation the user can select only one application at a time and
this will be extended so that multiple applications can be selected in a particular session.
If, say, the user selects Research as the application, the system provides the user with a
preselected input list containing various categories like simulators, design tools, operating

7-5

Login / Password

Sclect Application
T 1
] v b
Research E-Commerce v Multimedia
Presclected List
Specify Approx.
presented a5 a GUI Session Time
Examples:
Simulators
Design Tools
Opcrating System Hosts allowed in
Programming/Scripts the users domain
Documentation based on the user
Miscellancous like profile
FTP, rlogin, telnet etc. (Presented in a GUI)
l —’I};;ion Scope
User defined Input
(Text Area)

Ijubjxl I [Object l leeselecwd Act.ims]

Formatter

1

Software Agent
Sprint Plan

Action from the
User defined text input

Figure 3: Flowchart of GUI Development

7-6

"""""""""""""""""""""""""""

S
';»\.w\‘k»: N

Figure 5: Choice of Design Tools on a System

7-7

-

77
%
3%

2
%
.

R
G

Figure 8: Login Information Generated by the Converter

7-8

Figure 9: List of Allowed Hosts Generated by the Converter

system, programming languages, scripts, documentation and miscellaneous items like ftp,
r-login, telnet etc. Figures 4, 5, 6 show the screen images of the GUI illustrating various
choices of Simulators, Design Tools and Miscellaneous items respectively.

The user just needs to check off the tasks he/she intends to perform. Once this is done,
the watchdog queries the user if he/she intends to specify any other items that were not
present in the predetermined list. This is achieved by entering text in the text area provided
by the watchdog. Then the user is queried if he intends to open multiple sessions. If the
user selects Yes, a preselected list of all hosts in that particular domain which the user is
authenticated to connect, is given based on his profile. The user can check off all the places
he intends to connect to. Then the watchdog subdivides the information obtained into 5
parts, subject (users login information), object (objects the user is going to modify in the
session), preselected actions (obtained from the preselected input), text actions (obtained
from the text area), and period (approximate time of the session). The preselected list of
actions is then processed by a converter to produce a sprint plan. The text action part is
fed to a software agent. This agent is an autonomous intelligent entity and is responsible to
understand the text input given by the user and convert it into the sprint plan. Figure 7
gives a summary of the session scope generated by the GUI based on some user input.

The various components of the sprint plan are shown in Figures 8, 9, 10. These components
are combined together by a formatter to obtain the final sprint plan (not shown). This
completes the one-time monitoring part. The implementation of this as well as the run-time

7-9

Figure 10: The ‘Action’ Component of Sprint Plan Generated by the Converter

7-10

monitoring and the comparison part also have been successfully completed. The entire GUI
was implemented using a platform neutral language such as Java.

4 Architecture Simulation

The simulation setup is Java-based. To keep the complexity of implementation to a mini-
mum, the system is initially simulated for one user and two hosts and a server. The auxiliary
monitor watchdog is also simulated. This watchdog queries a user as soon as he/she logs on.
The query is initiated with the help of a graphical user interface. The inputs to the query are
stored in a scope-file which will be used to generate the sprint plan. If the current login is a
second session, then the system will not query the user for the scope file. Instead, the already
generated sprint plan will be used from the server for monitoring purposes. The watchdog
continuously monitors the user activity, compares the run-time inputs to the sprint plan,
thereby generating exceptions with the help of a dialog initiator and a set of safety counters.
The session-scope captured from the user and the sprint plan are stored in a secure place in
the server. The run-time monitoring of the user activity is hidden from the user. However,
the user can update the scope file upon submitting a request to the watchdog. An intelligent
software agents assists the watchdog in converting the user defined input of the scope-file
into the appropriate assertions in the sprint plan. The architecture of the simulated system
is shown in Figure 11. The software agent and the file watchdog which is responsible to
guard the secure files in the server are not fully implemented at this stage.

5 New Ideas and and Future Work

In order to establish the generality of our work, a commercial (virtual) banking environment
is considered. Here, attention is given to simulating the employees in a bank rather than
the customer so that we can test for misuse intrusions. An employee in a bank might
have access to sensitive data and there is always a possibility of misusing the previleges.
The simulated banking environment supports multiple banks with multiple accounts with
multiple employees in the bank having access to all the accounts. The customer is also
simulated to some extent allowing online access to checking account. The customer is also
provided with ATM facility. The dialog between the customer and the employee is being
simulated. Further details of this simulation will appear in [7].

The basic prototype and application environment simulation will facilitate intrusion in-
jection experiments and the evaluation of our concurrent intrusion detection technique. The
actual evaluation was considered only as a long term objective and was outside the scope of
this project. Several new ideas have been developed to improve and automate the sprint plan
conversion process. One such idea is the development of a reasonableness check framework.
Techniques such as computational thread following, and temporal and structural sequence

7-11

server If Sprint
Plan exists for

Sprint plan conversion
Refer to Figure 3

Y

Sprint plan

Sprint plan stored
at a secure place

Sprint Plan

Sprint Plan Conversion

Refer to Figure 3

Sprint Plal

Exception Generator

To User 1 | Dialog Initiator
—————— and
Analyzer
Legend :

——3= User Login to Host 1
s {ser Login to Host 2

Compare with

I Intrusion signal to Master Watchdog

server If Sprint
Plan exists for

User Activity

Figure 11: Run-time Monitoring Setup for 1-user, 2-hosts System on a Single Server

7-12

monitoring will be used where applicable, in addition to traditional inverse operation test-
ing. The practices used in business and commerce to arrive at reasonable contract pricing [8]
and other mathematical estimation techniques will be leveraged in deriving our framework.
"This framework can be used to determine what is a reasonable plan when a user initially
porovides his/her computing premises to the monitor watchdog.

References

[1] J. Feldman, J. Giordano, and J. Palmer, “Information survivability at Rome laboratory,”
1997 IEEE Information Survivability Workshop, 1997.

[2] B. Panda and J. Giordano, “Defensive information warfare: Guest editorial,” Communi-
cations of the ACM, pp. 31-32, July 1999.

[3] K. Ilgun, R. Kemmerer, and P. Porras, “State transition analysis: A rule-based intrusion
detection approach,” IEEE Trans. on Software Eng., vol. 21, pp. 181-199, March 1995.

[4] P. Porras and P. Neumann, “EMERALD: Event monitoring enabling responses to anoma-
lous live disturbances,” National Information Systems Security Conf., pp. 353-365, Oct.
1997.

[5] S. Upadhyaya and K. Kwiat, “A distributed concurrent intrusion detection scheme based
on assertions,” SCS International Symposium on Performance Evaluation of Computer
and Telecommunication Systems, pp. 369-376, July 1999.

[6] M. Namjoo, “Techniques for concurrent testing of VLSI processor operation,” Proc.
International Test Conference, pp. 461-468, November 1982.

[7] K. Mantha, R. Chinchani, S. Upadhyaya, and K. Kwiat, “Simulation of intrusion de-
tection in distributed systems,” submitted to SCS Summer Simulation Conference, July
2000.

[8] U.S. Congress, “DOD contract pricing: Hearing before a subcommittee of the committee
on government operations, House of Representatives, One Hundredth Congress, second
session,” Washington, U.S. G.P.0O, September 1988.

